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ABSTRACT: Density functional theory (DFT) calculations using hybrid exchange−
correlation functionals have been shown to provide an accurate description of the
electronic structures of nanosystems. However, such calculations are often limited to
small system sizes due to the high computational cost associated with the construction
and application of the Hartree−Fock (HF) exchange operator. In this paper, we
demonstrate that the recently developed adaptively compressed exchange (ACE)
operator formulation [J. Chem. Theory Comput. 2016, 12, 2242−2249] can enable
hybrid functional DFT calculations for nanosystems with thousands of atoms. The cost
of constructing the ACE operator is the same as that of applying the exchange operator
to the occupied orbitals once, while the cost of applying the Hamiltonian operator with
a hybrid functional (after construction of the ACE operator) is only marginally higher
than that associated with applying a Hamiltonian constructed from local and semilocal
exchange−correlation functionals. Therefore, this new development significantly
lowers the computational barrier for using hybrid functionals in large-scale DFT
calculations. We demonstrate that a parallel planewave implementation of this method can be used to compute the ground-state
electronic structure of a 1000-atom bulk silicon system in less than 30 wall clock minutes and that this method scales beyond
8000 computational cores for a bulk silicon system containing about 4000 atoms. The efficiency of the present methodology in
treating large systems enables us to investigate adsorption properties of water molecules on Ag-supported two-dimensional
silicene. Our computational results show that water monomer, dimer, and trimer configurations exhibit distinct adsorption
behaviors on silicene. In particular, the presence of additional water molecules in the dimer and trimer configurations induces a
transition from physisorption to chemisorption, followed by dissociation on Ag-supported silicene. This is caused by the
enhanced effect of hydrogen bonds on charge transfer and proton transfer processes. Such a hydrogen bond autocatalytic effect is
expected to have broad applications for silicene as an efficient surface catalyst for oxygen reduction reactions and water
dissociation.

1. INTRODUCTION

Water adsorption on the surface of nanomaterials plays a crucial
role in the fields in chemistry, biology, and materials science.1

In particular, the interaction of water with noble metals and
metal oxides has drawn considerable interest owing to the
observation that these metals and metal oxides can serve as
surface catalysts for partial water dissociation.2−7 Therefore,
they may be good candidate materials for molecular sensor and
other photocatalytic solar energy applications. Compared to
conventional three-dimensional (3D) metals and metal oxides,1

two-dimensional (2D) materials8−10 have larger reactive
contact area for molecular adsorption. Therefore, they are
expected to be more effective surface catalysts for molecular
chemisorption and dissociation. However, it has been found
that the adsorption energies of water molecules on most 2D
materials such as graphene,11−13 germanene,14−16 phosphor-
ene,17−19 and molybdenum disulfide (MoS2),

20−22 are rather
small due to weak van der Waals interactions of water
molecules physisorption on these 2D materials. The weak
adsorption property prevents these materials from being used

directly as practical molecular sensors or efficient catalysts for
oxygen reduction reaction and water dissociation without
introducing dopants or defects.23,24

In this paper, we examine the possibility of using silicene as a
surface catalyst for water dissociation through computation.
Silicene is a 2D silicon monolayer similar to graphene but with
buckled honeycomb structures.25−28 Although it shares many
similar properties with graphene, silicene exhibits a much
higher chemical reactivity for atomic and molecular adsorption
than graphene due to its buckled honeycomb structures.29−32

In order to determine theoretically whether silicene is a
promising metal-free 2D catalyst for water chemisorption and
dissociation, we need to obtain an accurate description of the
electronic structures of molecules and silicene-based nano-
systems. These electronic structure properties include the
energy position of the highest occupied and lowest unoccupied
molecular orbitals (HOMO/LUMO) of molecules, the valence
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band maximum (VBM) and conduction band minimum
(CBM) of semiconductors and the work functions (the energy
difference between the vacuum level and the Fermi level) of
metals. These electronic properties can help elucidate the
interfacial chemical reactions of molecular adsorption on the
catalyst surfaces.33−35 We use Kohn−Sham density functional
theory (KSDFT)-based36,37 computational methods to calcu-
late the desired electronic properties of water molecules and a
silicene-based substrate. The accuracy of this type of calculation
depends strongly on the choice of the exchange and correlation
functionals. The widely used semilocal LDA-PZ38 and GGA-
PBE39 functionals often fail to give accurate electronic
structures in such systems due to the lack of long-range
nonlocal Hartree−Fock exchange interaction in the KSDFT
calculations.
Hybrid density functionals, such as B3LYP,40 PBE0,41 and

HSE,42 have already been shown to improve the accuracy of
KSDFT calculations by incorporating a fraction of the
Hartree−Fock exact exchange or screened exchange operator
into the Kohn−Sham Hamiltonian. In particular, DFT
calculations with HSE functionals have been widely used to
predict accurate adsorption energies for stable adsorption sites
and electronic structures for molecular frontier level alignment
relative to metals and semiconductors, for molecular adsorption
on surfaces.33−35 However, hybrid-functional-based DFT
calculations are considerably more costly than DFT calculations
that make use of a local or semilocal exchange−correlation
functional. When the KSDFT equations are expanded in a
planewave basis, the cost of applying the (discretized)
Hartree−Fock exact exchange operator to all occupied orbitals
scales cubicly with respect to the system size, but the
preconstant of the computation is very large. Various numerical
methods have been developed to reduce the computational cost
of Hartree−Fock-like calculations, such as linear scaling
methods.43,44 However, these methods are only effective for
large systems with a substantial band gap.45−47

The recently developed adaptively compressed exchange
(ACE) operator technique48 is an accurate and efficient method
for accelerating hybrid functional calculations. The efficiency of
ACE results from the reduced computational cost associated
with the construction and application of the Hartree−Fock
exchange operator without loss of accuracy. The ACE operator
is a low-rank approximation to the exact or screened Hartree−
Fock exchange operator. It produces the same effect as the
exact or screened exchange operator when applied to the set of
occupied orbitals. Because the construction of the ACE
operator does not depend on the system’s energy gap, the
technique can be applied to metals, semiconductors, and
insulators.
The advantage of using the ACE formulation in a sequential

hybrid functional DFT calculation has been demonstrated in a
previous publication.48 In this paper, we systematically
demonstrate that the ACE formulation is also suitable for a
massively parallel hybrid functional DFT calculation and that it
allows hybrid functional DFT calculations to be carried out for
systems with a few thousands of atoms. Thus, it significantly
lowers the computational barrier and enables the wider use of
hybrid functional calculations in studying a variety of
nanosystems.46,49,50 We show that when the ACE technique
is used for large-scale nanosystems, the computational cost of
hybrid functional calculations is no longer completely
dominated by the construction and application of the Fock
exchange operator. The optimization of other components of

the computation, such as a proper choice of an eigensolver,
become important. We will discuss the use of an eigensolver
based on the Projected Preconditioned Conjugate Gradient
(PPCG)51 algorithm which outperforms the well-known
LOBPCG (Locally Optimal Block Preconditioned Conjugate
Gradient) algorithm52 in the context of hybrid functional
calculations.
With the help of ACE-enabled parallel hybrid functional

DFT calculations, we are able to examine the adsorption and
electronic properties of water molecules on silicene. We
observe that water monomer, dimer, and trimer show
contrasting adsorption behaviors on silicene. The additional
water molecules in dimer and trimer configurations induce a
transition from physisorption to chemisorption and then to
dissociation, on silicene. We compare the computational results
obtained from a GGA-PBE functional calculation and those
obtained from the hybrid HSE06 functional calculations, and
we find that the GGA-PBE calculations significantly under-
estimate the energy gaps of water molecules compared to what
is observed in the hybrid HSE06 calculation. We also find that
the work functions of metallic Ag-supported silicene depend
less sensitively on the choice of exchange−correlation func-
tionals. Therefore, hybrid density functional calculations can
significantly improve the fidelity of electronic structure
calculations for molecular frontier level alignment of adsorption
of water molecules on the surfaces under investigation.

2. METHODOLOGY

2.1. ACE Formulation for Hybrid Density Functional
Calculations. In this section, we briefly review the adaptively
compressed exchange (ACE) operator formulation, in the
context of hybrid functional calculations. The KSDFT
equations in the pseudopotential approximation are defined as

ψ ρ ψ ψ ε ψ= − Δ + + + =⎜ ⎟
⎛
⎝

⎞
⎠H V V V

1
2

[ ] [{ }]i i j i iPS H XC (1)

where {εi} are the eigenvalues, {ψi} are the orbitals and Ne is
the number of electrons. The orbitals {ψi} satisfy the
orthogonal constraints as ∫ ψi*(r) ψj(r) dr = δij, and ρ(r) =
∑i = 1

Ne |ψi(r) |
2 is the electron density. The second term VPS is the

pseudopotential operator, which is independent of the electron
density. The third term VH[ρ] is the Hartree potential, which
depends on the density ρ(r) as

∫ρ δ ρ′ = − ′ ′
| − ′|

′V r r r r
r

r r
r[ ]( , ) ( )

( )
dH

The fourth term is the exchange−correlation potential, which
can be formally split as VXC = VX + VC, where VX models the
exchange interaction, and VC models the many body correlation
effects. In LDA and GGA calculations, both the VX and VC
terms only depend on the density.
However, hybrid density functionals mix a fraction of the

exact exchange potential from Hartree−Fock (HF) theory or its
screened version, with the exchange and correlation potentials
from DFT functionals. For example, the HSE exchange−
correlation functional42 is widely used to accurately describe the
electronic structures for molecules and semiconductors in
computational chemistry and materials science,33−35 and it uses
an error function screened Coulomb potential to calculate the
exchange portion of the energy. The HSE06 exchange−
correlation energy53 is
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where EX
PBE,SR and EX

PBE,LR refer to the short-range and long-
range parts of the exchange contribution in the PBE
functional,39 respectively. EX

SR is the short-range part of the
Fock exchange energy, defined as
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Here, erfc is the complementary error function, and μ is an
adjustable parameter to control the screening length of the
short-range part of the Fock exchange interaction.
When the parameter μ is fixed, the functional derivative of

EXC
HSE with respect to the Kohn−Sham orbitals gives the

exchange correlation potential

δ′ = ′ + − ′V V Vr r r r r r r( , ) 0.25 ( , ) ( ) ( )XC
HSE

X
HSE

XC
PBE

(4)

Here VXC
PBE is the exchange−correlation potential due to the

contribution from the PBE functional and is a local potential,
and VX

HSE is a full rank, nonlocal operator, and depends on not
only the density but also the occupied orbitals {ψj} as

∑ψ ψ ψ′ = − ′ ′
=

V Kr r r r r r[{ }]( , ) ( ) ( ) ( , )j
j

N

j jX
HSE

1

e

(5)

Here ′ = μ | − ′ |
| − ′|K r r( , ) r r
r r

erfc( ) is the screened Coulomb kernel.

When a large basis set such as the planewave basis set is used,
the only viable operation is to apply VX

HSE to e.g. occupied
orbitals. This amounts to solving Ne

2 Poisson-like problems with
FFT, and the computational cost is N N N( log( ) )g g e

2 , where
the Ng is the number of points in the FFT grid. This cost is
asymptotically comparable to other matrix operations such as
the QR factorization for orthogonalizing the Kohn−Sham
orbitals which scales as N N( )g e

2 , but the log (Ng) prefactor is
significantly larger. Therefore, the computation of the exchange
term alone can take more than 95% of the computational time,
and its cost overshadows the rest of the components in the
Kohn−Sham solver.
Because the Fock exchange energy is only a small fraction

(usually 5% or less) of the total energy, it is more efficient not
to update the exchange operator in each self-consistent field
iteration. For the conventional planewave-based electronic
structure software packages, such as Quantum ESPRESSO,54

the self-consistent field (SCF) iteration of all occupied orbitals
can be separated into two sets of SCF iterations. In the inner
SCF iteration, the orbitals defining the exchange operator VX

HSE

as in eq 5 are fixed, denoted by {φi}. Then the matrix-vector
multiplication of VX and an orbital ψ is given by

∫∑φ ψ φ φ ψ= − ′ ′ ′ ′
=

V Kr r r r r r r( [{ }] )( ) ( ) ( , ) ( ) ( )dj
j

N

j jX
HSE

1

e

(6)

With the exchange operator fixed, the Hamiltonian operator
only depends on the electron density ρ(r), which needs to be
updated in each inner SCF iteration by solving the linear
eigenvalue problem in eq 1. Once the inner SCF for the
electron density is converged, the output orbitals can simply
then be used as the input orbitals to update the exchange
operator. The outer SCF iteration continues until convergence

is reached. The convergence of the outer iteration can be
monitored by the convergence of, for example, the Fock
exchange energy. Note that even with the exchange operators
fixed by {φi}, Ne

2 Poisson-like equations still need to be solved
in each matrix-vector multiplication Hψi within each inner SCF
iteration step.
The recently proposed adaptively compressed exchange

(ACE) operator formulation48 significantly reduces the cost
of hybrid functional calculations, by means of solving Ne

2

Poisson-like equations only at the beginning of each outer
iteration. This greatly reduces the computational cost of the HF
exchange but without loss of accuracy. The ACE method
constructs a low rank approximation of the exchange operator
targeting only at Ne orbitals. The ACE formulation does not
depend on the size of energy gaps in the systems and thus can
be applied to metals, semiconductors, and insulators. Therefore,
the ACE formulation is particularly suitable for large-scale
hybrid density functional calculations in computational
chemistry and materials science.
In the ACE formulation, in each outer iteration, for a given

set of orbitals {φi}i = 1
Ne , we first compute

φ φ= =W V i Nr r( ) ( [{ }] )( ) 1, ...,i iX
HSE

e (7)

The adaptively compressed exchange operator, denoted by
VX
ACE, should satisfy the conditions

φ = ′ = ′V W V Vr r r r r r( )( ) ( ) and ( , ) ( , )i iX
ACE

X
ACE

X
ACE

(8)

For simplicity, we assume real arithmetic is used, which is the
case for molecules and solid state systems with Γ point
sampling. The potential VX

ACE is defined as

∑′ = ′
=

V W B Wr r r r( , ) ( ) ( )
i j

N

i ij jX
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, 1

e

(9)

where B = M−1 is a negative semidefinite matrix, and

∫ φ=M Wr r r( ) ( )dkl k l

Perform Cholesky factorization for −M, that is, M = −LLT,
where L is a lower triangular matrix. Then we get B = −L−TL−1.
We define the projection vector in the ACE formulation as

∑ξ =
=
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N

i
T
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1

e
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then the adaptively compressed exchange operator is given by
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=
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e
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We also remark that ACE can be readily used to reduce the
computational cost of the exchange energy, without the need of
solving any extra Poisson equation:

∬

∫
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The main advantage of the ACE formulation is the
significantly reduced cost of applying VX

ACE to a set of orbitals
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than that of applying VX. Once ACE is constructed, the cost of
applying VX

ACE to any orbital ψ is similar to the application of a
nonlocal pseudopotential, thanks to its low rank structure. ACE
only needs to be constructed once when φi’s are updated in the
outer iteration. After they are constructed, the ACE can be
reused for all the subsequent inner SCF iterations for the
electron density and each iterative step for solving the linear
eigenvalue problem. Because each outer iteration could require
10−100 or more applications of the Hamiltonian matrix H, the
cost associated with the solution of the Poisson problem is
hence greatly reduced. The flowchart of iterative methods for
solving Hartree−Fock-like equations in the ACE formulation
will be given later in Figure 2.
The ACE technique is related to the projector-based

compression of the exchange operator.55−57 One difference
between ACE and the projector-based compression is that the
ACE compresses the exchange operator into a rank Ne operator
if the exchange operator is to be applied to Ne orbitals, while
the projector-based formulation constructs an operator that is
of rank 3Ne and is hence slightly more expensive. The ACE
formulation has also been recently adapted to compress other
quantities in electronic structure calculations such as the
polarizability operator.58

2.2. Choice of Iterative Methods for Solving Large-
Scale Eigenvalue Problems. As discussed in the introduc-
tion, the computational cost of hybrid functional calculations is
often dominated by the cost of matrix-vector multiplication Hψi
and, in particular, by the application of the exchange operator.
The cost due to the choice of iterative eigensolver is often
insignificant for small systems. In the ACE formulation, the cost
of Hψi in hybrid functional calculations is only marginally larger
than that in LDA/GGA calculations. Therefore, other
components of the algorithm, in particular the Rayleigh−Ritz
step in iterative eigensolvers, can contribute significantly to the
overall computational time for systems of large size.
For systems of relatively small sizes (up to hundreds of

atoms), our default choice of the eigensolver is the LOBPCG
algorithm.52 The LOBPCG method solves the linear eigenvalue
problem of the form HX = XΛ by iteratively searching the
minimum of the Tr[XTHX] with the orthogonality constraint
XTX = I in a subspace spanned by 3Ne vectors [X, W, P]. More
specifically

← + +X XC WC PCX W P (13)

Here W is called a preconditioned residual

= ≔ −W TR T HX X X HX( ( ))T
(14)

where R = HX − X(XTHX) is the residual, and T is a
preconditioner. For planewave basis sets, we use the Teter
preconditioner,59 which can be efficiently implemented by
Fourier transform. P represents a conjugate direction. The
coefficients CX, CW, and CP are obtained by computing the
lowest Ne eigenpairs of the projected 3Ne × 3Ne generalized
eigenvalue problem

= ΛS S SCHSCT T (15)

where S = [X, W, P] is the trial subspace and C = [CX, CW, CP]
T

are the optimal coefficients. The LOBPCG method is outlined
in Algorithm 1.
Notice that when Ne is relatively small (Ne ∼ 10−1000), the

computational cost of the 3Ne × 3Ne projected eigenvalue
problem in the Rayleigh−Ritz step (i.e., step 5 of Algorithm 1)
is negligible. However, when Ne is relative large (Ne ∼ 1000−

10000), the computational cost for solving such 3Ne × 3Ne
projected eigenvalue problem can become dominant and can
no longer be ignored. Furthermore, because of the limited
scalability of available kernels for solving dense eigenvalue
problems, the Rayleigh−Ritz step also limits the parallel
scalability of LOBPCG and becomes the bottleneck when
using a thousand or more processors on modern high
performance computing architectures.
The cost of the Rayleigh−Ritz step can be reduced by the

recently developed PPCG algorithm.51 The main idea of PPCG
is to replace the 3Ne × 3Ne projected eigenvalue problem by Ne
subproblems, each of size 3 × 3. The computational cost of this
step scales linearly with Ne and is negligibly small even when Ne
is large. It should be noted that the Rayleigh−Ritz procedure in
step 12 of Algorithm 2 is optional and, in practice, is performed
periodically after every 5−10 iterations to transform the
columns of X to eigenvector approximations. Furthermore,
when PPCG is combined with the SCF procedure, the
Rayleigh−Ritz problem (of size Ne × Ne) has to be solved
only once at the end of the SCF iteration. Therefore, the cost of
PPCG can be significantly smaller than that of LOBPCG when
Ne is large. The pseudocode of the PPCG algorithm is shown in
Algorithm 2.

2.3. Parallel Implementation. The ACE formulation is
implemented in the DGDFT (Discontinuous Galerkin Density
Functional Theory) software package.60−62 DGDFT is a
massively parallel electronic structure software package for
large-scale DFT calculations of tens of thousands of atoms,
which includes a self-contained module called PWDFT for
performing conventional standard planewave-based electronic
structure calculations, and we use the Message Passing Interface
(MPI) to handle data communication. We adopt the
Hartwigsen−Goedecker−Hutter (HGH) norm-conserving
pseudopotentials.63

The collection of wave functions is denoted by Ψ =
[ψ1,...,ψNe

]. We use two different types of data distribution
partition for the wave functions in PWDFT, as shown in Figure
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1. The column cyclic partition, as shown in Figure 1a, is used
for applying the Hamiltonian operator to the wave functions Ψ

without the ACE operator. For example, when applying the
Laplacian operator to the orbitals using the Fast Fourier
Transform (FFT), because each processor holds all entries of
an orbital, the column partition allows the FFTs to be done in
the same way as in a sequential implementation.
In order to apply the ACE operator, note that we do not

explicitly store the ACE operator but only the projection
vectors Ξ = [ξ1,...,ξNe

]. The column size of Ξ is exactly the same
as that of Ψ. The application of VX

ACE to Ψ is similar to that of
applying a set of nonlocal pseudopotentials. However, unlike
the standard nonlocal pseudopotential vectors which are
localized in the real space and could be stored as sparse
vectors, the vectors Ξ are in general delocalized both in the real
and in the Fourier space. Then the application of VX

ACE can be
performed as VX

ACEΨ = −Ξ(ΞTΨ). This involves two matrix−
matrix multiplication operations: one in the form of XT Y and
the other in the form of XC. Here the dimension of X and Y is
Ng × Ne, and the dimension of C is Ne × Ne. In order to carry
out the matrix products efficiently, we store Ξ as a dense matrix
partitioned in row blocks as in Figure 1b, and we store ΞT Ψ
redundantly over all processors. In such a format, the operation
in the form XC does not require any additional MPI
communication, and the operation in the form XTY only
requires matrix products locally on each processor, followed by
an MPI_Allreduce operation to sum up local products. We find
that this format allows the parallel ACE implementation to
scale to thousands of computational cores.
In order to perform such matrix−matrix multiplication, we

need to transform Ψ from the column partition format to the
row partition format. This conversion of the data distribution
formats can be achieved using MPI_Alltoallv. Note that the row
partition is also the natural format for performing matrix−
matrix products in subsequent steps in an iterative linear
eigensolver (LOBPCG or PPCG), the data conversion only
needs to be done once per iteration step when solving the
linear eigenvalue problem. In the eigensolvers, the Cholesky
factorization and the Rayleigh−Ritz eigenvalue problems (The
matrix dimensions are 3Ne and Ne respectively for LOBPCG

and PPCG algorithms) are performed in parallel using the
ScaLAPACK64 library.
At the beginning of a new outer SCF iteration, the ACE

operator must be updated. This requires the solution of Ne
2

Poisson-like equations. The orbitals {φj} are stored in the same
column-wise cyclic distribution as of {ψj} in Figure 1(a). For
each MPI task, we broadcast the local {φj} to other MPI
processors by using the MPI_Bcast call, and then compute the
integral ∫ K (r,r′) φj(r′) ψi(r′) dr′ by solving the Poisson-like
problem using FFT. This yields {Wi} (eq 7), which is stored in
the column-wise partition format. In order to construct the
projection vectors {ξk}, the {Wi} vectors are again transformed
to the row partition to compute the matrix M as the inner
product between Wi’s and φj’s. Cholesky factorization for the
matrix −M is performed, and finally {ξk} are obtained by
solving a triangular system using the Cholesky factors as in eq
10.
For conventional hybrid density functional calculations, the

computation of the Fock exchange energy are expensive due to
additional requirements of solving the Poisson equations for
large systems even containing a few hundreds of atoms.
However, in the framework of ACE formation, the computa-
tional cost of the Fock exchange energy defined in Equation 12
is greatly reduced, because we only require the matrix−matrix
inner products in the column cyclic data distribution partition
as shown in Figure 1b.
The flowchart of PWDFT for iterative methods to solve the

KSDFT equations in the ACE formulation is shown in Figure 2,
including two-level SCF structure. For large-scale hybrid
density functional calculations in the ACE formulation, the
main computational components are (a) solution of large-scale
KSDFT eigenvalue problems and (b) construct the ACE
operator. In particular, the application of the Hamiltonian
operator in the ACE format is no longer expensive, and the cost
is comparable to that of applying the Hamiltonian operator
using local and semilocal exchange−correlation functionals.

3. RESULTS AND DISCUSSION

In this section, we first present some computational results that
demonstrate the accuracy and efficiency of ACE-based hybrid
functional DFT calculation for simple bulk silicon systems of
various sizes. We then show that with such a powerful tool, we
can carefully analyze the details of water molecules adsorption
on Ag-supported two-dimensional silicene. The hybrid func-
tional we use in the following calculation is the HSE06
functional.53

Figure 3 shows the geometric structures of several bulk
silicon systems used in our computational experiments. We use
eight bulk silicon systems to measure the scalability of the
computation. These systems include Si8 in a standard unit cell,
Si64 in a 2 × 2 × 2 supercell, Si216 in a 3 × 3 × 3 supercell, Si512
in a 4 × 4 × 4 supercell, Si1000 in a 5 × 5 × 5 supercell, Si1728 in
the 6 × 6 × 6 supercell, Si2744 in the 7 × 7 × 7 supercell and
Si4096 in the 8 × 8 × 8 supercell.
Table 1 lists the number Natom of silicon atoms, the length

Lsupercell (Å) of supercells, the number Nband of bands (or
states), and the total number Ngrid of grid points required to
represent the ortbials in the real space for a given Ecut. All
systems are closed shell with spin degeneracy excluded.
Therefore, the number of bands is Nband = Ne/2. The total
number of grid points Ngrid is determined from the kinetic
energy cutoff Ecut by the following rule:

Figure 1. Two different types of partition of wave functions {ψi}i = 1
Ne for

the ACE formulation in PWDFT. The column cyclic partition as
shown in (a) is used for Fast Fourier Transform (FFT) to compute
exact exchange operator applied to wave functions {ψi}i = 1

Ne . The row
block partition as shown in (b) is used when matrix−matrix
multiplications are in the form φTψ and ψC.
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π
=N

E L
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grid
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(16)

Here Li is the length of supercells along the i-th coordinate
direction. The total number of grid points is Ngrid = ∏i = 1

3

(Ng)i. In a typical calculation Ngrid ∼ 104 − 106 and Nband ∼ 102

− 104, as shown in Figure 1.
3.1. Accuracy. We first study the accuracy of the ACE

calculation. Figure 4 shows how the errors in the computed HF
energy ΔEHF and energy band gap ΔEgap of bulk silicon system
Si64 change with respect to the Ecut parameter. We set a large

Ecut = 40 hartree as the convergence reference results in the
ACE calculations, and then we define the errors of the HF
energy and energy band gap respectively as ΔEHF = EHF −
EHF(Ecut = 40 Ha) and ΔEgap = Egap − Egap(Ecut = 40 Ha), where
EHF and Egap, respectively, represent the HF energy and energy
band gap, which are changed with respect to the energy cutoff
Ecut. Our calculations show that the errors of the HF energy and
energy gap can be as small as about 10−4 Hartree when the
energy cutoff is set to 10 hartree. In the following hybrid
density functional calculations of other bulk silicon systems
about the convergence calculations and parallel performance,
we set the energy cutoff Ecut to 10 hartree to guarantee the
accuracy of the calculations.
We compare the computational results between the conven-

tional hybrid DFT calculations and ACE-enabled hybrid DFT
calculations in terms of the HF energy and the energy gap for
the Si64, Si216, Si512, and Si1000 systems, as shown in Table 2. Our
calculations show that the ACE-enabled hybrid DFT
calculations can give very accurate HF energy and energy gap
(the energy difference is under 1 × 10−4 Hartree) even for large
systems (Si1000) compared to conventional hybrid DFT
calculations. In fact, the ACE formulation is exact and does
not introduce any error in hybrid functional calculations when
the SCF convergence is reached. The small error of ACE
formulation originates from our convergence criterion that the
outer SCF iteration is terminated when the relative error of the

Figure 2. Flowchart of the ACE formulation for hybrid density
functional calculations. The inner SCF iteration replaces the exchange
operator VX by the low rank operator VX

ACE, and VX
ACE is only updated

at the beginning of each outer SCF iteration.

Figure 3. Geometric structures of bulk silicon systems used for the
ACE formulation in PWDFT. (a) Si8 in the unitcell, (b) Si64 in the 2 ×
2 × 2 supercell, (c) Si1000 in the 5 × 5 × 5 supercell, and (d) Si4096 in
the 8 × 8 × 8 supercell.

Table 1. Structural Properties of Bulk Silicon Systems Used
for the ACE Formulation in PWDFT, Including the Number
Natom of Silicon Atoms, the length Lsupercell (Å) of Supercells,
the Number Nband of Bands (or States), and the Total
Number Ngrid of Grid Points for Different Bulk Silicon
Systemsa

systems Natom Lsupercell (Å) Nband Ngrid

Si8(1 × 1 × 1) 8 5.43 16 153

Si64(2 × 2 × 2) 64 10.86 128 303

Si216(3 × 3 × 3) 216 16.29 432 443

Si512(4 × 4 × 4) 512 21.72 1024 603

Si1000(5 × 5 × 5) 1000 27.15 2000 743

Si1728(6 × 6 × 6) 1728 32.58 3456 883

Si2744(7 × 7 × 7) 2744 38.01 5488 1043

Si4096(8 × 8 × 8) 4096 43.45 8192 1183

aWe set Ecut = 10 hartree to guarantee the accuracy of the calculations.

Figure 4. Computational accuracy of Si64 in terms of the HF energy
error ΔEHF (Hartree) and the energy gap error ΔEgap (Hartree) with
different kinetic energy cut off Ecut (Hartree).
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exchange energy is smaller than 10−6. When this criterion is
tightened, the error can further decrease systematically.
3.2. Efficiency. We demonstrate the convergence of hybrid

density functional calculations for the Si1000 system, which has
2000 occupied bands. Table 3 lists the number of inner

iterations taken in each of the first three outer SCF iterations.
As expected, we can see that the use of ACE does not impact
the number of inner SCF iterations per outer SCF iteration.
Furthermore, the convergence property of hybrid DFT
calculations with ACE in terms of the number of outer SCF
iterations is comparable to that of the conventional algorithm.48

We also compare the wall clock time consumed by each
outer SCF iteration with and without using the ACE
formulation. The use of the ACE formulation significantly
reduces the computational time. Note that in each outer SCF
iteration that uses ACE, roughly 82 s are spent to update the
low rank approximation to the exchange operator. For this
ACE-enabled hybrid DFT calculation, each inner SCF iteration,
which uses the LOBPCG eigensolver to compute 2000 or so
eigenpairs, takes only 48 s compared to 365 s in conventional
hybrid DFT calculation. We should also remark that we use the
standard GGA functional (PBE)-based DFT calculation to
generate the initial guesses of the orbitals required in the hybrid
DFT calculation. For this problem, we ran 25 SCF iterations
using the PBE GGA functional. This initial step takes 1286 s on
2000 cores.
Furthermore, we also study the comparison results of

iterative methods for large-scale convergence hybrid density
functional (HSE06) calculations by using the ACE formulation
as shown in Figure 5. We find that the PPCG algorithm is
about 2 times faster (22 s) than the LOBPCG algorithm (48 s)
for the eigenvalue problems in each inner SCF iteration. The
total wall time for these three methods (Conventional HSE06
(LOBPCG), ACE HSE06 (LOBPCG) and ACE HSE06
(PPCG)), respectively, is 9731, 2987, and 1322 s for hybrid
density functional calculations on the Si1000 system (2000
bands) by using 2000 computational cores. Notice that these
time includes the standard GGA-PBE calculations (1286 and

624 s, respectively, for LOBPCG and PPCG algorithms for 25
times inner SCF iterations) to initialize the oribitals for
conventional hybrid functional (HSE06) calculations.

3.3. Parallel Scalability. Section 2.3 indicates that the
construction and the application of the ACE operator can be
efficiently parallelized. To illustrate the parallel scalability of the
ACE approach in PWDFT, we examine how the wall clock time
spent in each inner and outer SCF iteration changes with
respect to both the number of cores (strong scaling) and the
system size (weak scaling).
Figure 6a shows that the strong scalability of ACE is nearly

perfect up to 2000 processors for the Si1000 systems, and Figure
6b shows the weak scalability of the ACE is nearly ideal for
systems with up to 4096 atoms on 8192 cores. Figure 6c,d
indicate that both the strong and weak scaling are mainly
limited by the choice of eigensolver instead of the construction
of the ACE operator, when more than 1000 processors are
used.
Furthermore, we can see from Figure 6c that updating the

ACE operator is the most expensive step in each outer SCF
iteration even though its parallel scaling is nearly perfect. When
the number of cores used in the computation is relatively small
(a few hundred), it takes roughly 3−4 times more wall clock
time to update the ACE operator than to complete inner SCF
iterations (PPCG). We also observe that the cost of HF
exchange energy computation is relatively low compared to the
cost of updating the ACE operator. In the case of Si1000, it only
takes 0.4 s to compute the HF energy on 2000 computational
cores, whereas 85 s are required to update the ACE operator.
To examine the parallel performance of the inner SCF

iteration more closely, we examine the strong and weak scaling

Table 2. Comparison Results between the Conventional Hybrid DFT Calculations and ACE-Enabled Hybrid DFT Calculations
in Terms of the HF Energy EHF (Hartree) and the Energy Gap Egap (Hartree) for the Si64, Si216, Si512, and Si1000 Systemsa

methods ACE HSE06 (LOBPCG) conventional HSE06 (LOBPCG)

systems EHF Egap EHF Egap

Si64 −13.541616 (10−6) 1.488335 −13.541629 1.488352
Si216 −45.471192 (10−7) 1.449790 −45.471190 1.449790
Si512 −107.698011 (10−7) 1.324901 −107.698016 1.324902
Si1000 −210.300628 (10−6) 1.289162 −210.300524 1.289128

aThe corresponding relative errors of the HF energy are shown in the brackets.

Table 3. Comparison between the Conventional Hybrid
DFT Calculation and an ACE-Enabled Hybrid DFT
Calculation in Terms of the Number of Inner SCF Iterations
and Wall Clock Time Spent in Each outer SCF Iteration for
Si1000 on 2000 Cores

methods ACE HSE06 (LOBPCG)
conventional

HSE06 (LOBPCG)

no. outer SCF no. inner SCF time (s) no. inner SCF time (s)

1 6 356 6 2518
2 5 320 5 2044
3 5 308 4 1665

Figure 5. Comparison results of iterative methods for large-scale
convergence hybrid density functional calculations (HSE06) by using
the ACE formulation. Two different iterative algorithms (LOBPCG
and PPCG) are used to solve KSDFT eigenvalue problems in the ACE
formulation for hybrid density functional calculations on the Si1000
system (2000 bands) by using 2000 computational cores. We adopt
the relative residual of total potential in the inner SCF iterations.
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parallel scalability of the eigensolver used in each inner SCF
iteration. Figure 7 shows that the PPCG algorithm exhibits

better strong and weak scaling properties than LOBPCG. For
the Si1000 system (2000 bands), the PPCG-based calculation is
roughly 3 times faster than LOBPCG-based calculation. For
Si1728 (3456 bands), it becomes very expensive to use the
LOBPCG algorithm to solve the Kohn−Sham eigenvalue
problem because the Rayleigh−Ritz procedure used in the

LOBPCG algorithm requires fully diagonalization of a 10 372 ×
10 372 dense matrix.

3.4. Applications to Water Adsorption on Silicene.
The reduction in computational cost achieved by ACE and its
high parallel scalability enables us to perform hybrid DFT
calculations to study the adsorption properties of water
molecules on silicene. Because the use of semilocal
exchange−correlation functionals are often effective in
optimizing the structure of nanosystems33 and such semilocal
DFT calculations are less costly than hybrid DFT calculations,
we first use the GGA-PBE39 exchange−correlation functional
with semiempirical long-range dispersion correction proposed
by Grimme (DFT-D2)65 to optimize the nanosystems. The
long-range dispersion correction allows us to better describe
the weak van der Waals interactions of silicene deposited on
substrates and molecular adsorption on the surfaces. We find
that DFT-D2 calculations in PWDFT give an accurate bilayer
distance of 3.25 Å and a binding energy of −25 meV per carbon
atom for bilayer graphene, which fully agrees with previous
experimental66 and theoretical67 studies. Furthermore, DFT-D2
calculations also give accurate binding energy of −0.26 eV in
water molecule dimer.68 These results confirm the validity of
using GGA-based DFT calculations for structural properties.
Using a hybrid functional (HSE06) yields similar geometric
structures and adsorption properties of water molecules
adsorbed on silicene.
It should be noted that semilocal GGA-PBE-based DFT

calculations are less reliable in predicting electronic properties
(e.g., energy gap) of nanosystems. In particular, PBE-based
DFT calculations tend to underestimate the energy gaps of
molecules and semiconductors. The use of hybrid DFT
calculations often produce more accurate results. For example,
GGA-PBE calculations give an energy gap of 6.2 eV for the
water molecule, which is smaller than the 8.2 eV returned from
a calculation that uses the HSE06 functional in PWDFT. We
also cross-checked these calculations against results produced
by VASP (Vienna Ab initio Simulation Package) software.69

Figure 8 shows the geometric structures of water molecules
adsorbed on silicene. Because it is still challenging to obtain
freestanding silicene in the experiments, here we consider a
silicene sheet deposited on a typical Ag(111) substrate.70 This
system includes 72 silicon (Si) atoms and 256 silver (Ag) atoms
denoted by Si72Ag256. We study three types of water clusters
((H2O)n, n = 1, 2, and 3, respectively, for water monomer,

Figure 6. (a) Change of wall clock time in one SCF iteration with
respect to the number of cores for the Si1000 system (strong scaling).
(b) Change of wall clock time with respect to system size on 2000
cores (weak scaling). Panels (c) and (d) show how different
components of an ACE-enabled hybrid DFT calculation scale with
respect to the number of cores and the system size, respectively.

Figure 7. Wall clock time for solving the eigenvalue problems
(LOBPCG and PPCG) in one inner SCF iteration with respect to the
number of computational cores used for the Si1000 system (Strong
scaling) and the number of silicon atoms in different systems (Weak
scaling). In the case of weak scaling, we use one computational core
for each band as the systems increase.

Figure 8. Geometric structures (top and side views) of water
molecules adsorbed on silicene supported by the Ag(111) surface,
including (a) physisorption of (H2O)1/silicene/Ag, (b) chemisorption
of (H2O)2/silicene/Ag, (c) chemisorption of (H2O)3/silicene/Ag, and
(d) dissociation of (H2O)3/silicene/Ag. The yellow, red, white, and
blue balls denote silicon, oxygen, hydrogen, and silver atoms,
respectively.
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dimer, and trimer) adsorption on silicene. We consider two
different adsorption configurations for the water trimer on
silicene as shown in Figure 8c,d. We adopt the Hartwigsen−
Goedecker−Hutter norm-conserving pseudopotentials63 with
valence and semicore states of 1s1 for H atom, 2s22p4 for O
atom, 3s23p2 for Si atom, and 4d105d1 (Including 4d10 semicore
states) for Ag atom in our DFT calculations. The number of
occupied states for the Si72Ag256 system is 1552. We include
240 unoccupied states in a finite temperature calculation with
the temperature set to 300 K. We set the energy cutoff Ecut to
40 hartree for these calculations.
The adsorption properties of these optimized systems are

listed in Table 4. Our calculations show that water monomer is

physically adsorbed on Ag-supported silicene (Figure 8a) via
weak van der Waals interactions,30 with small adsorption
energy (−0.45 eV) and large adsorption distances (2.22 Å).
These properties are similar to those of water monomers
adsorbed on graphene.71 However, the water dimer and trimer
molecules adsorbed on Ag-supported silicene show large
adsorption energies (−1.01, −2.29, and −2.22 eV) via strong
covalent Si−O bonds (1.90, 1.80, and 1.75 Å) between an
oxygen atom (Oa) in water and a top silicon atom (Sia), and
thus, they are chemically adsorbed (H2O−Si) on the silicene
(Figure 8b,c). Furthermore, this strong adsorption is found to
induce dissociation of water trimer on Ag-supported silicene
(HO−-Si + H3O

+) (Figure 8d).
In order to reveal the intrinsic mechanism for such

interesting chemical reaction phenomena, we study the
electronic structures of water clusters and Ag-supported
silicene, which can can help elucidate the interfacial chemical
reactions of water molecules adsorption on silicene. Table 5
shows the HOMO, LUMO energies and energy gaps of
adsorbate water clusters and work functions of Ag-supported
silicene obtained from the GGA-PBE and HSE06 exchange−
correlation functional calculations. We find that the GGA-PBE-
based DFT calculations yield much lower the energy gaps of

the water clusters (6.2, 5.2, 4.8, and 4.9 eV) compared to that
(8.2, 6.9, 6.6, and 6.7 eV) produced by HSE06-based hybrid
DFT calculations, although the use of different exchange−
correlation functionals results in little effect on the work
functionsWf (4.0 and 4.1 eV respectively for the GGA-PBE and
HSE06 calculations) of metallic Ag-supported silicene.33 In the
HSE06 calculations, the Fermi level of Ag-supported silicene is
closer to the LUMO energies of water clusters than the HOMO
energies, indicating the water LUMO should be the reaction
orbitals hybridized with the silicon Si 3pz orbitals when water
molecules adsorption on silicene. However, the GGA-PBE
calculations predict the opposite result that the Fermi level of
Ag-supported silicene is closer to the HOMO energies of the
water dimer and trimer than the corresponding LUMO
energies. Therefore, semilocal GGA-PBE calculations cannot
accurately describe the energy positions of HOMO and LUMO
of water clusters as well as their energy gaps, and hybrid density
functional calculations can significant improve the fidelity of
predicting interfacial chemical reactions of molecules adsorp-
tion on the substrates.
Figure 9 shows the total density of states (TDOS) of water

clusters and Ag-supported silicene computed with the HSE06

exchange−correlation functional. We find that for water
monomer, the HOMO and LUMO energies are far away (4.5
and 3.7 eV) from the Fermi level of Ag-supported silicene.
Thus, water monomer has a low chemical reactivity to
silicene.32 Due to the interactions between hydrogen-bond
acceptor and donor molecules in water dimer and trimer, the
LUMO energies get lower (about 3.2 eV) and become closer to
the Fermi level as more hydrogen bonds are formed in water
clusters. Furthermore, the LUMO states in water dimer and
trimer, especially for the adsorption oxygen atoms (Oa) at the
top silicon (Sia) of silicene, are quenched due to the repulsive
interactions with neighboring hydrogen-bond molecules, while
the HOMO states are almost unchanged in water clusters.72

Therefore, the LUMO states get more reactive as more

Table 4. Adsorption Properties of Water Molecules
Adsorption on Silicene, Including Adsorption Type (Phys/
Chem/Diss), Adsorption Energy Ea (eV), Adsorption Si−O
Bond Length d (Å)

systems type Ea d

(a) (H2O)1/silicene/Ag phys −0.45 2.22
(b) (H2O)2/silicene/Ag chem −1.01 1.90
(c) (H2O)3/silicene/Ag chem −2.29 1.80
(d) (H2O)3/silicene/Ag diss −2.22 1.75

Table 5. Comparison Results of the HOMO Energy EHOMO
(eV), LUMO Energy ELUMO (eV), and Energy Gaps Eg (eV)
of Adsorbate Water Clusters Computing by the GGA-PBE
and HSE06 Exchange−Correlation Functionalsa

methods GGA-PBE HSE06

systems EHOMO ELUMO Eg EHOMO ELUMO Eg

(H2O)1 (phys) −7.2 −1.0 6.2 −8.6 −0.4 8.2
(H2O)2 (chem) −6.5 −1.3 5.2 −7.8 −0.9 6.9
(H2O)3 (chem) −6.0 −1.2 4.8 −7.4 −0.8 6.6
(H2O)3 (diss) −6.2 −1.3 4.9 −7.6 −0.9 6.7

aThe work functions Wf (eV) of Ag-supported silicene are 4.0 and 4.1
eV, respectively, for the GGA-PBE and HSE06 calculations.

Figure 9. Total density of states (TDOS) of water clusters ((a)
(H2O)1(phys), (b) (H2O)2(chem), (c) (H2O)3(chem) and (d)
(H2O)3(diss)) and Ag-supported silicene ((e) silicene/Ag) computed
with the HSE06 exchange−correlation functional. The HOMO and
LUMO energy levels of water clusters are marked by black solid lines.
The HOMO and LUMO states of water clusters are shown in the
inset, and the pink and blue regions indicate the positive and negative
phase of isosurfaces (0.06 au). The Fermi level of Ag-supported
silicene is marked by green dotted lines. All the energy levels are
referenced to the vacuum level, which is set to zero. The adsorption
oxygen atoms (Oa) of water molecules at the top of silicene are
marked by solid black arrows.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b01184
J. Chem. Theory Comput. 2017, 13, 1188−1198

1196

http://dx.doi.org/10.1021/acs.jctc.6b01184


hydrogen bonds are formed in water clusters, which makes the
electrons transfer from the Si 3pz orbitals (delocalized
broadening is about 4 eV) of Sia atom in silicene to the O 2s
and O 2pz orbitals of Oa atom in water more easier. This effect
induces the activated Oa atom to form a Si−O bond upon
adsorption, showing an autocatalytic behavior for chemisorp-
tion and dissociation compared to water monomer phys-
isorption on silicene. Note that in both Figure 8c,d, the O atom
from the H-bond donor water molecule binds with the Si atom
in silicene, while the positions of the H-bond acceptors are
different. Proton transfer can only occur along the H-bond
chain as shown in Figure 8d, resulting in the dissociation of
water molecule. On the other hand, such H-bond chain is
destroyed into two separated H-bonds as in Figure 8c and thus
proton transfer cannot occur. The difference between
chemisorption and dissociation is thus caused by the relative
position of the H-bond donor and the H-bond acceptors, while
the energy difference between the two configurations is small.
This is also confirmed from the results in Table 5.

4. CONCLUSIONS
We have described a massively parallel implementation of the
recently developed adaptively compressed exchange (ACE)
operator formulation for accurate and efficient computation of
the exact Hartree−Fock exchange. We compared two iterative
algorithms (LOBPCG and PPCG) for solving the Kohn−Sham
density functional theory (KSDFT) eigenvalue problems for
large-scale hybrid density functional calculations in the plane
wave basis set, and we found that PPCG can take advantage of
modern high-performance computing architectures more
efficiently for systems of large sizes. We demonstrated the
efficiency and scalability of our method using hybrid density
functional calculations on bulk silicon systems containing up to
4096 atoms. Furthermore, we studied the adsorption properties
of water molecules on Ag-supported two-dimensional silicene
by using large-scale hybrid density functionals calculations, and
we found that water monomer, dimer, and trimer config-
urations show contrasting adsorption behaviors on silicene. The
additional water molecules in dimer and trimer configurations
induce a transition from physisorption to chemisorption,
followed by dissociation on silicene. Such a hydrogen bond
autocatalytic effect is expected to have broad applications in
efficient catalysis for oxygen reduction and water dissociation
reactions.
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