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The ground state electron density — obtainable using Kohn-Sham Density Functional Theory (KS-
DFT) simulations — contains a wealth of material information, making its prediction via machine
learning (ML)models attractive. However, the computational expense of KS-DFT scales cubically with
system size which tends to stymie training data generation, making it difficult to develop quantifiably
accurate ML models that are applicable across many scales and system configurations. Here, we
address this fundamental challenge by employing transfer learning to leverage the multi-scale nature
of the training data, while comprehensively sampling system configurations using thermalization. Our
ML models are less reliant on heuristics, and being based on Bayesian neural networks, enable
uncertainty quantification. We show that our models incur significantly lower data generation costs
while allowing confident — and when verifiable, accurate — predictions for a wide variety of bulk
systems well beyond training, including systems with defects, different alloy compositions, and at
multi-million-atom scales. Moreover, such predictions can be carried out using only modest
computational resources.

Over the past several decades, Density Functional Theory (DFT) calcula-
tions based on the Kohn-Sham formulation1,2 have emerged as a funda-
mental tool in the prediction of electronic structure.Today, they stand as the
de facto workhorse of computational materials simulations3–6, offering
broad applicability and versatility. Although formulated in terms of orbitals,
the fundamental unknown in Kohn ShamDensity Functional Theory (KS-
DFT) is the electron density, from which many ground state material
properties — including structural parameters, elastic constants, magnetic
properties, phonons/vibrational spectra, etc., may be inferred. The ground
state electrondensity is also the startingpoint for calculations of excited state
phenomena, including those related to optical and transport properties7,8.

In spite of their popularity, conventionalKS-DFTcalculations scale in a
cubic manner with respect to the number of atoms within the simulation
cell, making calculations of large and complex systems computationally
burdensome. To address this challenge, a number of different approaches,
which vary in their computational expense and their range of applicability,
have been proposed over the years. Such techniques generally avoid explicit
diagonalization of the Kohn-Sham Hamiltonian in favor of computing the
single particle density matrix9. Many of these methods are able to scale

linearlywith respect to the systemsizewhenbulk insulators ormetals at high
temperatures are considered9–13, while others exhibit sub-quadratic scaling
when used for calculations of low-dimensional materials (i.e.,
nanostructures)14,15. Contrary to these specialized approaches, there are only
a handful of first-principles electronic structure calculation techniques that
operate universally across bulk metallic, insulating, and semiconducting
systems, while performing more favorably than traditional cubic scaling
methods (especially, close to room temperature). However, existing tech-
niques in this category, e.g.16,17, tend to face convergence issues due to
aggressive use of density matrix truncation, and in any case, have only been
demonstrated for systems containing at most a few thousand atoms, due to
their overall computational cost. Keeping these developments in mind, a
separate thread of research has also explored reducing computational wall
times by lowering the prefactor associated with the cubic cost of Hamilto-
nian diagonalization, while ensuring goodparallel scalability of themethods
on large scale high-performance computing platforms18–21. In spite of
demonstrations of these and related methods to study a few large example
problems (e.g.22–24), their routine application to complex condensed matter
systems, using modest, everyday computing resources appears infeasible.
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The importance of being able to routinely predict the electronic
structure of generic bulk materials, especially, metallic and semiconducting
systems with a large number of representative atoms within the simulation
cell, cannot be overemphasized. Computational techniques that can per-
formsuch calculations accurately and efficientlyhave thepotential tounlock
insights into a variety of material phenomena and can lead to the guided
design of new materials with optimized properties. Examples of materials
problems where such computational techniques can push the state-of-the-
art include elucidating the core structure of defects at realistic concentra-
tions, the electronic and magnetic properties of disordered alloys and
quasicrystals25–28, and the mechanical strength and failure characteristics of
modern, compositionally complex refractory materials29,30. Moreover, such
techniques are also likely to carry over to the study of low dimensional
matter and help unlock the complex electronic features of emergent
materials such as van-der-Waals heterostructures31 and moiré
superlattices32. Notably, a separate direction of work has also explored
improving Density Functional Theory predictions themselves, by trying to
learn the Hohenberg-Kohn functional or exchange correlation
potentials33–35. This direction of work will not have much bearing on the
discussion that follows below.

An attractive alternative path to overcoming the cubic scaling bottle-
neck of KS-DFT— one that has found much attention in recent years— is
the use of Machine Learning (ML) models as surrogates36,37. Indeed, a sig-
nificant amount of research has already been devoted to the development of
ML models that predict the energies and forces of atomic configurations
matching with KS-DFT calculations, thus spawning ML-based interatomic
potentials that can be used for molecular dynamics calculations with
ab initio accuracy38–43. Parallelly, researchers have also explored direct pre-
diction of the ground state electron density via ML models trained on the
self-consistent electron density obtained from KS-DFT simulations34,44–48.
This latter approach is particularly appealing, since, in principle, the ground
state density is rich in information that goes well beyond energies and
atomic forces, and such details can often be extracted through simple post-
processing steps. Development of ML models of the electron density can
also lead to electronic-structure-aware potentials, which are likely to over-
come limitations of existing Machine Learning Interatomic Potentials,
particularly in the context of reactive systems49,50. Having access to the
electron density as an intermediate verifiable quantity is generally found to
also increase the quality ofMLpredictions of variousmaterial properties44,51,
and can allow training of additional ML models. Such models can use the
density as a descriptor to predict specific quantities, such as defect properties
of complex alloys52,53 and bonding information54. Two distinct approaches
have been explored in prior studies to predict electron density via Machine
Learning, differing in how they represent the density – the output of the
machine learning model. One strategy involves representing the density by
expanding it as a sum of atom-centered basis functions55,56. The other
involves predicting the electron density at each grid point in a simulation
cell. Both strategies aim to predict the electron density using only the atomic
coordinates as inputs. While the former strategy allows for a compact
representation of the electron density, it requires the determination of an
optimized basis set that is tuned to specific chemical species. It has been
shown in55 that the error in the density decomposition through this strategy
can be reduced to as low as 1%. In contrast, the latter strategy does not
require suchoptimizationbutposes a challenge in termsof inference -where
the prediction for a single simulation cell requires inference on thousands of
grid points (even at the grid points in a vacuum region). The former strategy
has shown good results for molecules55 while the latter has shown great
promise in density models for bulk materials especially metals46,48,57. In this
work, we use the latter approach.

For physical reasons, the predicted electron density is expected to obey
transformations consistent with overall rotation and translation of the
material system.Moreover, it should remain invariant underpermutationof
atomic indices. To ensure such properties, several authors have employed
equivariant-neural networks45,58–61. An alternative to such approaches,
which is sufficient for scalar valued quantities such as electron density, is to

employ invariant descriptors46,47,58,59. We adopt this latter approach in this
work and show through numerical examples that using invariant features
and predicting electron density as a scalar valued variable indeed preserves
the desired transformation properties.

A key challenge in building surrogate models of the ground state
electron density fromKS-DFT calculations is the process of data generation
itself, which can incur significant offline cost62. In recent work51, we have
demonstrated how this issue can be addressed for chiral nanomaterials63.
For such forms of matter, the presence of underlying structural symmetries
allows for significant dimensionality reduction of the predicted fields, and
the use of specialized algorithms for ground state KS-DFT calculations64–66.
However, such strategies cannot be adopted for bulkmaterialswith complex
unit cells, as considered here. For generic bulk systems, due to the confining
effects of periodic boundary conditions, small unit-cell simulations alone
cannot represent awide varietyof configurations. ToobtainMLmodels that
can work equally well across scales and for a variety of configurations (e.g.
defects67,68), data from large systems is also essential. However, due to the
aforementioned cubic scaling of KS-DFT calculations, it is relatively inex-
pensive to generate a lot of training datausing small sized systems (say, a few
tens of atoms), while larger systems (a few hundred atoms) are far more
burdensome, stymieing the data generation process. Previous work on
electron density prediction47,48 has been made possible by using data from
large systems exclusively. However, this strategy is likely to fail when
complex systems such as multi-principal element alloys are dealt with, due
to the large computational cells required for such systems. This is especially
true while studying compositional variations in such systems since such
calculations are expected to increase the overall computational expense of
the process significantly.

In this work, we propose a machine-learning model that accurately
predicts the ground state electron density of bulk materials at any scale,
while quantifying the associated uncertainties. Once trained, our model
significantly outperforms conventional KS-DFT-based computations in
terms of speed. To address the high cost of training data generation asso-
ciated with KS-DFT simulations of larger systems — a key challenge in
developing effective ML surrogates of KS-DFT — we adopt a transfer
learning (TL) approach69. Thus, our model is first trained using a large
quantity of cheaply generated data from simulations of small systems, fol-
lowing which, a part of the model is retrained using a small amount of data
from simulations of a few large systems. This strategy significantly lowers
the training cost of the ML model, without compromising its accuracy.
Along with the predicted electron density fields, our model also produces a
detailed spatial map of the uncertainty, that enables us to assess the con-
fidence in our predictions for very large scale systems (thousands of atoms
and beyond), for which direct validation via comparison against KS-DFT
simulations data is not possible. The uncertainty quantification (UQ)
properties of our models are achieved through the use of Bayesian Neural
Networks (BNNs), which systematically obtain the variance in prediction
through their stochastic parameters, and tend to regularize better than
alternative approaches70–72. They allow us to systematically judge the gen-
eralizability of our ML model, and open the door to Active Learning
approaches73 that can be used to further reduce the work of data generation
in the future.

To predict the electron density at a given point, theMLmodel encodes
the local atomic neighborhood information in the form of descriptors, that
are then fed as inputs to the BNN.Our neighborhood descriptors are rather
simple: they include distance and angle information from nearby atoms in
the form of scalar products and avoid choosing the basis set and “hand-
crafted” descriptors adopted by other workers39,74–77. Additionally, we have
carried out a systematic algorithmic procedure to select the optimal set of
descriptors, thus effectively addressing the challenge associated with the
high dimensionality of the descriptor-space. We explain this feature selec-
tion process in section “Selection of optimal set of descriptors”. To sample
this descriptor space effectively, we have employed thermalization, i.e.,
ab initio molecular dynamics (AIMD) simulations at various temperatures,
which has allowed us to carry out accurate predictions for systems far from
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training. Overall, our ML model reduces the use of heuristics adopted by
previous workers in notable ways, making the process of ML based pre-
diction of electronic structure much more systematic. Notably, the point-
wise prediction of the electronic fields via the trained MLmodel, make this
calculation scale linearly with respect to the system size, enabling a wide
variety of calculations across scales.

In the following sections, we demonstrate the effectiveness of our
model by predicting the ground state electron density for bulk metallic and
semiconducting alloy systems. In particular, we present: (i) Predictions and
error estimates for systemswell beyond the training data, including systems
with defects and varying alloy compositions; (ii) Demonstration of the
effectiveness of the transfer learning approach; (iii) Uncertainty quantifi-
cation capabilities of the model, and the decomposition of the uncertainty
into epistemic and aleatoric parts; and (iv) Computational advantage of the
model over conventional KS-DFT calculations, and the use of the model to
predict the electron density of systems containing millions of atoms.

Results
In this section, we present electron density predictions by the proposed
machine learning (ML) model for two types of bulk materials — pure
aluminum and alloys of silicon-germanium. These serve as prototypical
examples of metallic and covalently bonded semiconducting systems,
respectively.Thesematerialswere chosen for their technological importance
and because the nature of their electronic fields is quite distinct (see Sup-
plementary Fig. 4), thus presenting distinct challenges to the ML model.
Additionally, being metallic, the aluminum systems do not show simple
localized electronic features often observed in insulators78,79, further com-
plicating electron density prediction.

Theoverviewof thepresentMLmodel is given inFig. 1.Themodels are
trained using a transfer learning approach, with thermalization used to
sample a variety of system configurations. In the case of aluminum (Al), the
model is trained initially on a 32-atom and subsequently on a 108-atom
system. Corresponding system sizes for silicon germanium (SiGe) are 64
and 216 atoms respectively. Details of the ML model are provided in
“Methods”.

We evaluate the performance of the ML models for a wide variety of
test systems, which are by choice, well beyond the training data. This is
ensured by choosing system sizes far beyond training, strained systems,
systems containing defects, or alloy compositions not included in the
training. We assess the accuracy of the MLmodels by comparing predicted
electrondensityfields andground state energies againstDFT simulations. In
addition, we quantify the uncertainty in the model’s predictions. We
decompose the total uncertainty into two parts: “aleatoric” and “epistemic”.
The first is a result of inherent variability in the data, while the second is a
result of insufficient knowledge about the model parameters due to limited
training data. The inherent variability in the data might arise due to
approximations and round-off errors incurred in the DFT simulations and
calculation of the ML model descriptors. On the other hand, the modeling

uncertainty arises due to the lack of or incompleteness in the data. This lack
of data is inevitable since it is impossible to exhaustively sample all possible
atomic configurations during thedata generationprocess.Decomposing the
total uncertainty into these two parts helps distinguish the contributions of
inherent randomness and incompleteness in the data to the total uncer-
tainty. In the present work, a “heteroscedastic” noise model is used to
compute the aleatoric uncertainty,which captures the spatial variationof the
noise/variance in the data.

Error estimation
Toevaluate the accuracy of themodel,we calculated theRootMeanSquared
Error (RMSE) for the entire test dataset, including systems of the same size
as the training data as well as sizes bigger than training data. For aluminum,
the RMSEwas determined to be 4.1 × 10−4, while for SiGe, it was 7.1 × 10−4,
which shows an improvement over RMSE values for Al available in ref. 47.
The L1 norm per electron for Aluminuum is 2.63 × 10−2 and for SiGe it is
1.94 × 10−2 for the test dataset. Additionally, the normalized RMSE is
obtained by dividing the RMSE value by the range of respective ρ values for
aluminum and SiGe. The normalized RMSE for aluminum and SiGe test
dataset was found to be 7.9 × 10−3 for bothmaterials. Details of training and
test dataset are presented in Supplementary Section VI. To assess the gen-
eralizability of the model, we evaluate the accuracy of the ML model using
systemsmuch larger than those used in training, but accessible to DFT.We
consider two prototypical systems, an Aluminium system having 1372
atoms (Fig. 2) and a Silicon Germanium (Si0.5 Ge0.5) system having 512
atoms (Fig. 3). Themodel shows remarkable accuracy for both of these large
systems. The RMSE is 3.8 × 10−4 and 7.1 × 10−4 for aluminum and SiGe
respectively, which confirms the high accuracy of themodel for system sizes
beyond those used in training.

We now evaluate the performance of the ML model for systems con-
taining extended and localizeddefects, although such systemswere not used
in training. We consider the following defects: mono-vacancies, di-vacan-
cies, grain boundaries, edge, and screw dislocations for Al, and mono-
vacancies and di-vacancies for SiGe. The electron density fields predicted by
theMLmodelsmatchwith theDFTcalculations extremelywell, as shown in
Figs. 4 and 5. The error magnitudes (measured as the L1 norm of the
difference in electron density fields, per electron) are about 2 × 10−2 (see Fig.
6). The corresponding NRMSE is 7.14 × 10−3. We show in Uncertainty
quantification, that the model errors and uncertainty can be both brought
down significantly, by including a single snapshot with defects, during
training.

Another stringent test of the generalizability of the ML models is
performedby investigating SixGe1−x alloys, for x ≠ 0.5. Although only equi-
atomic alloy compositions (i.e., x = 0.5) were used for training, the error in
prediction (measured as the L1 norm of the difference in electron density
fields, per electron) is lower than 3 × 10−2 (see Fig. 6). The corresponding
RMSE is 8.04 × 10−4 and NRMSE is 7.32 × 10−3. We would like to make a
note that we observed good accuracy in the immediate neighborhood

Fig. 1 |Overview of the presentMachine Learning (ML)model.The first step is the
training data generation via ab initio simulations shown by the arrow at the top. The
second step is to generate atomic neighborhood descriptors x(i) for each grid point, i,
in the training configurations. The third step is to create a probabilistic map
(BayesianNeuralNetworkwithDenseNet like blocks consisting of skip connections)

from atomic neighborhood descriptors x(i) to the charge density at the corre-
sponding grid point ρ(i). The trainedmodel is then used for inferencewhich includes
(i) descriptor generation for all grid points in the query configuration, (ii) forward
propagation through the Bayesian Neural Network, and (iii) aggregation of the
point-wise charge density ρ(i) to obtain the charge density field ρ.
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(x = 0.4 to 0.6) of the training data (x = 0.5). Prediction for x = 0.4 is shown
in Fig. 10. The prediction accuracy however decreases as we move far away
from the training data composition. This generalization performance far
away from the training data is expected.We have also carried out tests with
aluminum systems subjected to volumetric strains, for which the results
were similarly good.

Our electron density errors are somewhat lower than compared to the
earlier works46,47, At the same time, thanks to the sampling and transfer
learning techniques adopted by us, the amount of time spent on DFT
calculations used for producing the training data is also smaller. To further
put into context the errors in the electron density, we evaluate the ground
state energies from the charge densities predicted by theMLmodel through
a postprocessing step and compare these with the true ground state energies
computed via DFT. Details on the methodology for postprocessing can be
found in the ‘Methods’ section, and a summaryof our postprocessing results
can be seen in Fig. 6, and in Supplementary Table 4 and Supplementary
Table 5. On average, the errors are well within chemical accuracy for all test
systems considered and are generallyOð10�4ÞHa atom−1, as seen in Fig. 6.
Furthermore, not only are the energies accurate, but the derivatives of the
energies, e.g., with respect to the supercell lattice parameter, are found to be
quite accurate as well (see Fig. 7). This enables us to utilize theMLmodel to

predict the optimum lattice parameter— which is related to the first deri-
vative of the energy curve, and the bulk modulus— which is related to the
second derivative of the energy curve, accurately.We observe that the lattice
parameter is predicted accurately to a fraction of a percent, and the bulk
modulus is predicted to within 1% of the DFT value (which itself is close to
experimental values80). Further details can be found in the Supplementary
Material. This demonstrates the utility of theMLmodels to predict not only
the electron density but also other relevant physical properties.

Overall, the generalizability of our models is strongly suggestive that
our use of thermalization to sample the space of atomic configurations, and
the use of transfer-learning to limit training data generation of large systems
are both very effective.Wediscuss uncertainties arising from the use of these
strategies and due to the neural network model, in addition to the noise in
the data, in the following sections.

Uncertainty quantification
The present work uses a BayesianNeural Network (BNN)which provides a
systematic route to uncertainty quantification (UQ) through its stochastic
parameters as opposed to other methods for UQ, for instance ensemble
averaging81. Estimates of epistemic and aleatoric uncertainties for the fol-
lowing systems are shown: adefect-freeAl systemwith1372atoms (Fig. 8), a

Fig. 2 | 1372 atom aluminum simulation cell at 631 K. Electron densities a cal-
culated byDFT and b predicted byML. The two-dimensional slice of (b) that has the
highest mean squared error, as calculated by c DFT and predicted by d ML.

e Corresponding absolute error in ML with respect to DFT. f–hMagnified view of
the rectangular areas in (c–e) respectively. The unit for electron density is e Bohr−3,
where e denotes the electronic charge.

Fig. 3 | 512 atoms Si0.5Ge0.5 simulation cell at 2300 K. Electron densities a cal-
culated byDFT and b predicted byML. The two-dimensional slice of (b) that has the
highest mean squared error, as calculated by c DFT and predicted by d ML.

e Corresponding absolute error in ML with respect to DFT. The unit for electron
density is e Bohr−3, where e denotes the electronic charge.
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256-atomAl systemwith amono-vacancy (Fig. 9a–d), and a Si0.4Ge0.6 alloy
(Fig. 10). Note, for the results in Fig. 9a–d the training data does not contain
any systems having defects, and for the results in Fig. 10 the training data
contains only 50− 50 composition.

In these systems, the aleatoric uncertainty has the same order of
magnitude as the epistemic uncertainty. This implies that the uncertainty
due to the inherent randomness in the data is of a similar order as the
modeling uncertainty. The aleatoric uncertainty is significantly higher near
the nuclei (Figs. 8, 10) and also higher near the vacancy (Fig. 9). This
indicates that the training data has high variability at those locations. The
epistemic uncertainty is high near the nucleus (Figs. 8, 10 since only a small
fraction of grid points are adjacent to nuclei, resulting in the scarcity of
training data for such points. The paucity of data near a nucleus is shown

through the distribution of electrondensity in Supplementary Fig. 4. For the
system with vacancy, the aleatoric uncertainty is higher in most regions, as
shown in Fig. 9c. However, the epistemic uncertainty is significantly higher
only at the vacancy (Fig. 9b), which might be attributed to the complete
absence of data from systems with defects in the training.

To investigate the effect of adding data from systemswith defects in the
training, we added a single snapshot of 108 atomaluminumsimulationwith
monovacancy defect to the trainingdata. This reduces the error at the defect
site significantly and also reduces the uncertainty (Fig. 9e). However, the
uncertainty is still quite higher at the defect site because the data is biased
against the defect site. That is, the amount of training data available at the
defect site is much less than the data away from it. Thus, this analysis
distinguishes uncertainty from inaccuracy.

Fig. 5 | ElectronDensity Prediction for SiGe systemwith vacancy defects.Electron
density contours and absolute error in ML for SiGe systems with a–c Si double
vacancy defect in 512 atom system d–fGe single vacancy defect in 216 atom system
densities a, d calculated by DFT, b, e predicted by ML, and c, f error in ML

predictions. Note that the training data for the above systems did not include any
defects. The unit for electron density is e Bohr−3, where e denotes the electronic
charge.

Fig. 4 | Electron density contours for aluminum systems with localized and
extended defects — Left: calculated by DFT, Right: predicted by ML. a (Top)
Mono-vacancy in 256 atom aluminum system, (Bottom) Di-Vacancy in 108 atom
aluminum system, b (1 1 0) plane of a perfect screw dislocation in aluminum with
Burgers vector a0

2 ½110�, and line direction along [110]. The coordinate system was
aligned along ½1�12�–½�111�–[110], c (Top) (0 1 0) plane, (bottom) (0 0 1) plane of a

[001] symmetric tilt grain boundary (0∘ inclination angle) in aluminum, d Edge
dislocation in aluminum with Burgers vector a0

2 ½110�. The coordinate system was
aligned along [110]–½�111�–½1�12� and the dislocation was created by removing a half-
plane of atoms below the glide plane. The unit for electron density is e Bohr−3, where
e denotes the electronic charge.

https://doi.org/10.1038/s41524-024-01305-7 Article

npj Computational Materials |          (2024) 10:175 5



To investigate the effect of adding data from larger systems in training,
we compare two models. The first model is trained with data from the 32-
atomsystem.The secondmodel uses a transfer learning approachwhere it is
initially trained using the data from the 32-atom system and then a part of
the model is retrained using data from the 108-atom system. We observe a
significant reduction in the error and in the epistemic uncertainty for the
transfer learned model as compared to the one without transfer learning.
The RMSE on the test system (256 atom) decreases by 50%when themodel
is transfer learned using 108 atom data. The addition of the 108-atom
system’s data to the training data decreases epistemic uncertainty as well
since the 108-atom system is less restricted by periodic boundary conditions
than the 32-atom system. Further, it is also statistically more similar to the
larger systems used for testing as shown in Supplementary Fig. 5. These

findings demonstrate the effectiveness of the Bayesian Neural Network in
pinpointing atomic arrangements or physical sites where more data is
essential for enhancing the ML model’s performance. Additionally, they
highlight its ability to measure biases in the training dataset. The total
uncertainty in the predictions provides a confidence interval for the ML
prediction. This analysis provides anupperboundof uncertainty arising out
of two key heuristic strategies adopted in our ML model: data generation
through thermalization of the systems and transfer learning.

Computational efficiency gains and confident prediction for very
large system sizes
Conventional KS-DFT calculations scale as OðNa

3Þ with respect to the
number of atomsNa, whereas, ourMLmodel scales linearly (i.e.,OðNaÞ), as

Fig. 6 | A comparison of the accuracy in the prediction of the charge density (in
terms of the L1 norm per electron between ρDFT and ρscaled), and the error (in Ha/
atom) in the ground state total energy computed using ρDFT and ρscaled, for Al
(left), and SiGe (right) systems. ρscaled is the scaled ML predicted electron density as

given in Eq. (6).We observe that the errors are far better than chemical accuracy, i.e.,
errors below 1 kcal mol−1 or 1.6 milli-Hartree atom−1, for both systems, even while
considering various types of defects and compositional variations. Note that for
SixGe1−x, we chose x = 0.4, 0.45, 0.55, 0.6.
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Fig. 7 | The energy curvewith respect to different lattice parameters for a 2 × 2 × 2
(left) and 3 × 3 × 3 (right) supercell of aluminum atoms. Overall, we see excellent
agreement in the energies (well within chemical accuracy). The lattice parameter
(related to the first derivative of the energy plot) calculated in each case agrees with
theDFT-calculated lattice parameter toOð10�2ÞBohr or better (i.e., it is accurate to a

fraction of a percent). The bulk modulus calculated (related to the second derivative
of the energy plot) from DFT data and ML predictions agree to within 1%. For the
3 × 3 × 3 supercell, the bulk modulus calculated via DFT calculations is 76.39 GPa,
close to the experimental value of about 76 GPa80. The value calculated from ML
predictions is 75.80 GPa.
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shown in Fig. 11. This provides computational advantage for ML model
over KS-DFTwith increasing number of atoms. For example, evenwith 500
atoms, the calculation wall times for ML model is 2 orders of magnitude
lower than KS-DFT. The linear scaling behavior of the ML model with
respect to thenumber of atoms canbe understood as follows.As thenumber
of atoms within the simulation domain increases, so does the total simu-
lation domain size, leading to a linear increase in the total number of grid
points (keeping the mesh size constant, to maintain calculation accuracy).
Since themachine learning inference is performed for each grid point, while
using information from a fixed number of atoms in the local neighborhood
of the grid point, the inference time is constant for each grid point. Thus the
totalMLprediction time scales linearly with the total number of grid points,
and hence the number of atoms in the system.

Taking advantage of this trend, the ML model can be used to predict
the electronic structure for systemsizes far beyond the reachof conventional
calculation techniques, including systems containing millions of atoms, as
demonstrated next. We anticipate that with suitable parallel programming
strategies (the ML prediction process is embarrassingly parallel) and

computational infrastructure, the present strategy can be used to predict the
electronic structure of systems with hundreds of millions or even billions of
atoms.Recently, there have beenattempts at electronic structure predictions
at million atom scales. In82, a machine learning based potential is developed
for germanium-antimony-tellurium alloys, effectively working for device
scale systems containing over half a million atoms. Another contribution
comes fromFiedler et al.48, where they present amodel predicting electronic
structure for systems containing over 100,000 atoms.

We show the electron densities, as calculated by our ML model, for a
four million atom system of Al and a one million atom system of SiGe, in
Figs. 12 and 13 respectively. In addition to predicting electron densities, we
also quantify uncertainties for these systems. We found that the MLmodel
predicts larger systems with equally high certainty as smaller systems (see
Supplementary Fig. 3). The confidence interval obtained by the total
uncertainty provides a route to assessing the reliability of predictions for
these million atom systems for which KS-DFT calculations are simply not
feasible. A direct comparison ofML obtained electron density withDFT for
large systems is not done till date, mainly because simulating such systems

Fig. 8 | Uncertainty quantification for 1372 atom aluminum system. aML pre-
diction of the electron density, b Epistemic Uncertainty c Aleatoric Uncertainty d
Total Uncertainty shown along the dotted line from the ML prediction slice. The

uncertainty represents the bound ± 3σtotal, where, σtotal is the total uncertainty. The
unit for electron density is e Bohr−3, where e denotes the electronic charge.

Fig. 9 | Uncertainty quantification for a 256 atom
aluminum system with a mono vacancy defect. a
ML prediction of the electron density shown on the
defect plane, b Epistemic uncertainty c Aleatoric
uncertainty d Uncertainty shown along the black
dotted line from the ML prediction slice. The
uncertainty, represents the bound ± 3σtotal, where,
σtotal is the total uncertainty. Note that the model
used to make the predictions in (a–d) is not trained
on the defect data, as opposed to the model used for
(e), where defect data from the 108 atom aluminum
system was used to train the model. The uncertainty
and error at the location of the defect reducewith the
addition of defect data in the training, as evident
from (d, e). The unit for electron density is e Bohr−3,
where e denotes the electronic charge.
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withDFT is impractical. However, recent advancements inDFT techniques
hold promise for simulating large-scale systems21,83,84. In future, it will be
worthwhile to compareMLpredicted electron density for large systems and
the electron density obtained through DFT, utilizing these recently intro-
duced DFT techniques.

Reduction of training data generation cost via transfer learning
Oneof the key challenges indeveloping an accurateMLmodel for electronic
structure prediction is the high computational cost associated with the
generation of the training data through KS-DFT, especially for predicting
the electron density for systems across length-scales. A straightforward
approach would involve data generation using sufficiently large systems
wherein the electron density obtained from DFT is unaffected by the
boundary constraints. However, simulations of larger bulk systems are
significantly more expensive than smaller systems. To address the com-
putational burden of simulating large systems, strategies such as “frag-
mentation" have been used in electronic structure calculations85,86. Further,
certain recent studies on Machine Learning Interatomic Potentials suggest
utilizingportions of a larger systemfor training themodels87,88. To thebest of
our knowledge, there is no corresponding work that utilizes fragmentation
inMLmodeling of the electron density. In thiswork, to address the issue, we
employed a transfer learning (TL) approach.We first trained theMLmodel
on smaller systems and subsequently trained a part of the neural network
using data from larger systems. This strategy allows us to obtain an efficient
ML model that requires fewer simulations of expensive large-scale systems
compared to what would have been otherwise required without the TL
approach. The effectiveness of the TL approach stems from its ability to
retain information froma large quantity of cheaper, smaller scale simulation
data. We would like to note however, that the transfer learning approach is
inherently bound by the practical constraints associatedwith simulating the
largest feasible system size.

As an illustration of the above principles, we show in Fig. 14, the RMSE
obtained on256 atomdata (system larger thanwhatwas used in the training
data) using the TL model and the non-TL model. We also show the time
required to generate the training data for both models. For the Al systems,
we trained the TLmodel with 32-atomdatafirst and then 108-atomdata. In
contrast, the non-TL model was trained only on the 108-atom data.

The non-TLmodel requires significantly more 108-atom data than the
TL model to achieve a comparable RMSE on the 256-atom dataset. More-
over, theTLmodel’s training data generation time is approximately 55% less
than that of the non-TLmodel. This represents a substantial computational
saving in developing the ML model for electronic structure prediction,
making the transfer learning approacha valuable tool to expedite suchmodel
development. Similar savings in training data generation timewere observed
for SiGe as shown in Fig. 14. In the case of SiGe, the TL model was first
trained using 64 atom data and then transfer learned using 216 atom data.

Discussions
We have developed an uncertainty quantification (UQ) enabled machine
learning (ML) model that creates a map from the descriptors of atomic
configurations to the electron densities.We use simple scalar product-based
descriptors to represent the atomic neighborhood of a point in space. These
descriptors, while being easy to compute, satisfy translational, rotational,
and permutational invariances. In addition, they avoid any handcrafting.
We systematically identify the optimal set of descriptors for a given dataset.
Once trained, our model enables predictions across multiple length scales
and supports embarrassingly parallel implementation. As far as we can tell,
our work is the first attempt to systematically quantify uncertainties in ML
predicted electron densities across different scales relevant to materials
physics. To alleviate the high cost of training data generation via KS-DFT,
we propose a two-pronged strategy: i) we use thermalization to compre-
hensively sample system configurations, leading to a highly transferableML
model; and ii) we employ transfer learning to train the model using a large
amount of inexpensively generateddata fromsmall systemswhile retraining
a part of the model using a small amount of data from more expensive
calculations of larger systems. The transfer learning procedure is system-
atically guided by the probability distributions of the data. This approach
enables us to determine the maximum size of the training system, reducing
dependence on heuristic selection. As a result of these strategies, the cost of
training data generation is reduced by more than 50%, while the models
continue to be highly transferable across a large variety of material config-
urations. Our use of Bayesian Neural Networks (BNNs) allows the uncer-
tainty associated with these aforementioned strategies to be accurately
assessed, thus enabling confident predictions in scenarios involvingmillions
of atoms, for which ground-truth data from conventional KS-DFT calcu-
lations is infeasible to obtain. Overall, ourMLmodel significantly decreases
the reliance onheuristics used by prior researchers, streamlining the process
ofML-based electronic structure prediction andmaking it more systematic.

We demonstrate the versatility of the proposed machine learning
models by accurately predicting electrondensities formultiplematerials and
configurations. We focus on bulk aluminum and Silicon-Germanium alloy
systems. The ML model shows remarkable accuracy when compared with
DFT calculations, even for systems containing thousands of atoms. In the
future, a similar model can be developed to test the applicability of the
present descriptors andML framework for molecules across structural and
chemical space89–92. As mentioned above, the ML model also has excellent
generalization capabilities, as it can predict electron densities for systems
with localized and extended defects, and varying alloy compositions, even
when the data from such systems were not included in the training. It is
likely that the ensemble averaging over model parameters in the BNNs,
along with comprehensive sampling of the descriptor space via system
thermalization together contribute to the model generalization capabilities.
Our findings also show a strong agreement between physical parameters

Fig. 10 | Uncertainty quantification for Si0.4Ge0.6 system. aML prediction of the
electron density, b Epistemic Uncertainty c Aleatoric Uncertainty d Total Uncer-
tainty shown along the dotted line from the ML prediction slice. The uncertainty

represents the bound ± 3σtotal, where, σtotal is the total uncertainty. The unit for
electron density is e Bohr−3, where e denotes the electronic charge.
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calculated from the DFT and ML electron densities (e.g. lattice constants
and bulk moduli).

To rigorously quantify uncertainties in the predicted electron density,
we adopt a Bayesian approach. Uncertainty quantification by a Bayesian
neural network (BNN) is mathematically well-founded and offers a more

reliable measure of uncertainty in comparison to non-Bayesian approaches
such as the method of ensemble averaging. Further, we can decompose the
total uncertainty into aleatoric and epistemic parts. This decomposition
allows us to distinguish and analyze the contributions to the uncertainty
arising from (i) inherent noise in the training data (i.e. aleatoric uncertainty)
and (ii) insufficient knowledge about the model parameters due to the lack
of information in the training data (i.e. epistemic uncertainty). The aleatoric
uncertainty or the noise in the data is considered irreducible, whereas the
epistemic uncertainty can be reduced by collecting more training data. As
mentioned earlier, the UQ capability of the model allows us to establish an
upper bound on the uncertainty caused by two key heuristic strategies
present in ourMLmodel, namely, data generation via the thermalization of
systems and transfer learning.

The reliability of the MLmodels is apparent from the low uncertainty
of its prediction for systems across various length-scales and configurations.
Furthermore, the magnitude of uncertainty for the million-atom systems is
similar to that of smaller systems for which the accuracy of the ML model
has been established. This allows us to have confidence in the ML predic-
tions of systems involving multi-million atoms, which are far beyond the
reach of conventional DFT calculations.

The ML model can achieve a remarkable speed-up of more than two
orders ofmagnitude overDFTcalculations, even for systems involving a few
hundred atoms. As shown here, these computational efficiency gains by the
MLmodel can be further pushed to regimes involvingmulti-million atoms,
not accessible via conventional KS-DFT calculations.

In the future, we intend to leverage the uncertainty quantification
aspects of this model to implement an active learning framework. This
framework will enable us to selectively generate training data, reducing the
necessity of extensive datasets and significantly lowering the computational
cost associated with data generation. Moreover, we anticipate that the
computational efficiencies offered via the transfer learning approach, are
likely to be evenmore dramatic while considering more complex materials
systems, e.g. compositionally complex alloys93,94.

Methods
Ab initio molecular dynamics
To generate training data for the model, Ab Initio Molecular
Dynamics (AIMD) simulations were performed using the finite-
difference based SPARC code95–97. We used the GGA PBE exchange-
correlation functional98 and ONCV pseudopotentials99. For alumi-
num, a mesh spacing of 0.25 Bohrs was used while for SiGe, a mesh
spacing of 0.4 Bohrs was used. These parameters are more than suf-
ficient to produce accurate energies and forces for the pseudopoten-
tials chosen, as was determined through convergence tests. A
tolerance of 10−6 was used for self-consistent field (SCF) convergence

Fig. 11 | Computational time comparison between DFT calculations and pre-
diction via trained ML model. (Top) Aluminum, (Bottom) SiGe. The DFT cal-
culations scale OðNa

3Þ with respect to the system size (number of atoms Na),
whereas, the present ML model scales linearly (i.e., OðNaÞ). The time calculations
were performed using the same number of CPU cores and on the same system
(Perlmutter CPU).

Fig. 12 | Prediction of electronic structure for aluminum system containing ≈ 4.1 million atoms. The unit for electron density is e Bohr−3, where e denotes the electronic
charge.

https://doi.org/10.1038/s41524-024-01305-7 Article

npj Computational Materials |          (2024) 10:175 9



and the Periodic-Pulay100 scheme was deployed for convergence
acceleration. These parameters and pseudopotential choices were seen
to produce the correct lattice parameters and bulk modulus values for
the systems considered here, giving us confidence that the DFT data
being produced is well rooted in the materials physics.

ForAIMDruns, a standardNVT-NoséHoover thermostat101wasused,
and Fermi-Dirac smearing at an electronic temperature of 631.554 K was
applied. The time step between successive AIMD steps was 1 femtosecond.
The atomic configuration and the electron density of the system were
captured at regular intervals, with sufficient temporal spacing between
snapshots to avoid the collection of data from correlated atomic arrange-
ments. To sample a larger subspace of realistic atomic configurations, we
performedAIMD simulations at temperatures ranging from315K to about
twice themelting point of the system, i.e. 1866K for Al and 2600K for SiGe.
Bulk disordered SiGe alloy systems were generated by assigning atoms
randomly to each species, consistent with the composition.

We also generate DFT data for systems with defects and systems
under strain, in order to demonstrate the ability of our ML model to
predict unseen configurations. To this end, we tested the ML model on
monovacancies and divacancies, edge and screw dislocations, and grain
boundaries. For vacancy defects, we generated monovacancies by
removing an atom from a random location, and divacancies by removing
two random neighboring atoms before running AIMD simulations. Edge
and screw dislocations for aluminum systems were generated using

Atomsk102. Further details can be found in Fig. 4. Grain boundary con-
figurations were obtained based on geometric considerations of the tilt
angle — so that an overall periodic supercell could be obtained, and by
removing extra atoms at the interface. For aluminum, we also tested an
isotropic lattice compression and expansion of up to 5%; these systems
were generated by scaling the lattice vectors accordingly (while holding
the fractional atomic coordinates fixed).

Machine learning map for charge density prediction
Our ML model maps the coordinates fRIgNa

I¼1 and species (with atomic
numbers fZIgNa

I¼1) of the atoms, and a set of grid points frig
Ngrid

i¼1 in a com-
putational domain, to the electron density values at those grid points. Here,
Na and Ngrid refer to the number of atoms and the number of grid points,
within the computational domain, respectively. We compute the afore-
mentionedmap in two steps. First, given the atomic coordinates and species
information, we calculate atomic neighborhood descriptors for each grid
point.Second, a neural network is used tomap thedescriptors to the electron
density at each grid point. These two steps are discussed in more detail
subsequently.

Atomic neighborhood descriptors
In this work, we use a set of scalar product-based descriptors to encode the
local atomic environment. The scalar product-based descriptors for the grid
point at ri consist of distance between the grid point and the atoms atRI; and

Fig. 13 | Prediction of electronic structure for Si0.5Ge0.5 system containing ≈ 1.4 million atoms. The unit for electron density is e Bohr−3, where e denotes the electronic
charge.

Fig. 14 | Models with Transfer Learning (TL) and without Transfer Learning
(Non-TL). a, c Root mean square error (RMSE) on the test dataset and b, d
Computational time to generate the training data. In the case of aluminum (a, b), the
TL model is trained using 32 and 108 atom data. For SiGe (c, d), the TL model was

trained using 64 and 216 atom data. In the case of aluminum, the non-TL model is
trained using 108 atom data. Whereas, in the case of SiGe, the non-TL model is
trained using 216 atom data.
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the cosine of angle at the grid point rimade by the pair of atoms atRI andRJ.
Here i = 1,…,Ngrid and I, J = 1,…,Na. We refer to the collections of dis-
tances i.e., ∣∣ri−RI∣∣ as set I descriptors, and the collections of the cosines of
the angles i.e.,

ðri�RI Þ�ðri�RJ Þ
jjri�RI jj jjri�RJ jj are referred to as set II descriptors.

Higher order scalar products such as the scalar triple product, and the
scalar quadruple product which involve more than two atoms at a time can
also be considered. However, these additional scalar products are not
included in the descriptor set in this work since they do not appear to
increase the accuracy of predictions.

Since thepredicted electrondensity is a scalar valuedvariable, invariance
of the input features is sufficient to ensure equivariance of the predicted
electron density under rotation, translation, and permutation of atomic
indices (as mentioned in refs. 58,59). Since the features of ourMLmodel are
scalar products and are sorted, they are invariant with respect to rotation,
translation, and permutation of atomic indices. In Supplementary Section I
we show through a numerical example that our model is indeed equivariant.
Further details of the descriptor calculation are also presented in that section.

Selection of optimal set of descriptors
As has been pointed out by previous work on ML prediction of electronic
structure46,47, the nearsightedness principle79,103 and screening effects104

indicate that the electron density at a grid point has little influence from
atoms sufficiently far away. This suggests that only descriptors arising from
atoms close enough to a grid point need to be considered in theMLmodel, a
fact which is commensurate with our findings in Fig. 15.

Using an excessive number of descriptors can increase the time
required for descriptor-calculation, training, and inference, is susceptible to
curse of dimensionality, and affect prediction performance105,106. On the
other hand, utilizing an insufficient number of descriptors can result in an
inadequate representation of the atomic environments and lead to an
inaccurate ML model.

Based on this rationale, we propose a procedure to select an
optimal set of descriptors for a given atomic system. We select a set of
M (M≤Na) nearest atoms from the grid point to compute the
descriptors and perform a convergence analysis to strike a balance
between the aforementioned conditions to determine the optimal
value of M. It is noteworthy that the selection of optimal descriptors
has been explored in previous works, in connection with Behler-
Parinello symmetry functions such as107 and108. These systematic
procedures for descriptor selection eliminate trial-and-error opera-
tions typically involved in finalizing a descriptor set. In ref. 108, the

authors have demonstrated for Behler-Parinello symmetry functions
that using an optimal set of descriptors enhances the efficiency of
machine learning models.

ForM nearest atoms, we will haveNset I distance descriptors, andNset II

angle descriptors, with Nset I =M and Nset II ≤
MC2.

The total number of descriptors is Ndesc =Nset I+Nset II. To optimize
Ndesc, we first optimize Nset I, till the error converges as shown in Fig. 15.
Subsequently, we optimizeNset II. To do this, we consider a nearer subset of
atoms of sizeMa ≤M, and for each of theseMa atoms, we consider the angle
subtended at the grid point, by the atoms and their knearest neighbors. This
results in Nset II =Ma × k, angle based descriptors, withMa and k varied to
yield the best results, as shown in Fig. 15. The pseudo-code for this process
can be found in SupplementaryAlgorithm2 and SupplementaryAlgorithm
3. Further details on feature convergence analysis are provided in the
Supplementary Material.

Bayesian neural network
Bayesian Neural Networks (BNNs) have stochastic parameters in contrast
to deterministic parameters used in conventional neural networks. BNNs
provide a mathematically rigorous and efficient way to quantify uncer-
tainties in their prediction.

Weuse aBayesianneural network to estimate theprobabilityPðρjx;DÞ
of the output electron density ρ for a given input descriptor x 2 RNdesc and
training data set D ¼ fxi; ρigNd

i¼1. The probability is evaluated as:

Pðρjx;DÞ ¼
Z

Ωw

Pðρjx;wÞPðwjDÞdw : ð1Þ

Herew∈Ωw is the set of parameters of the network andNd is the size of the
training data set. Through this marginalization over parameters, a BNN
provides a route to overcomemodeling biases via averaging over an ensemble
of networks. Given a prior distribution P(w) on the parameters, the posterior
distribution of the parameters PðwjDÞ are learned via the Bayes’ rule as
PðwjDÞ ¼ PðDjwÞPðwÞ=PðDÞ, where PðDjwÞ is the likelihood of the data.

This posterior distribution of parameters PðwjDÞ is intractable since it
involves the normalizing factor PðDÞ, which in turn is obtained via mar-
ginalization of the likelihood through a high dimensional integral. There-
fore, it is approximated through techniques such as variational
inference70,109,110 or Markov Chain Monte Carlo methods111. In variational
inference, as adopted here, a tractable distribution q(w∣θ) called the “var-
iational posterior” is considered, which has parametersθ. For instance, if the
variational posterior is a Gaussian distribution the corresponding para-
meters are its mean and standard deviation, θ = (μθ, σθ). The optimal value
of parameters θ is obtained by minimizing the statistical dissimilarity
between the true and variational posterior distributions. The dissimilarity is
measured through theKLdivergenceKL qðwjθÞ jjPðwjDÞ� �

. This yields the
following optimization problem:

θ� ¼ argmin
θ

KL qðwjθÞ jj PðwjDÞ� �
¼ argmin

θ

Z
qðwjθÞ log qðwjθÞ

PðwÞPðDjwÞ PðDÞ
� �

dw :
ð2Þ

This leads to the following loss function for BNN that has to be minimized:

FKLðD; θÞ ¼ KL qðwjθÞ jjPðwÞ� ��EqðwjθÞ½log PðDjwÞ� : ð3Þ

This loss function balances the simplicity of the prior and the complexity of
the data through its first and second terms respectively, yielding
regularization70,71.

Once the parameters θ are learned, the BNNs can predict the charge
density at any new input descriptor x. In this work, the mean of the para-
meters (μθ) are used to make point estimate predictions of the BNN.

Fig. 15 | Convergence of error with respect to the number of descriptors, shown
for aluminum. The blue line shows the convergence with respect toNset I, while the
other three lines show convergence with respect to Nset II. The optimal Nset I and
Nset II are obtained where their test RMSE values converge.
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Uncertainty quantification
The variance in the output distribution Pðρjx;DÞ in Eq. (1) is the
measure of uncertainty in the BNN’s prediction. Samples from this
output distribution can be drawn in three steps: In the first step, a jth

sample of the set of parameters, bwj¼1;:::;Ns
, is drawn from the variational

posterior q(w∣θ) which approximates the posterior distribution of
parameters PðwjDÞ. Here, Ns is the number of samples drawn from the
variational posterior of parameters. In the second step, the sampled
parameters are used to perform inference of the BNN (fN) to obtain the
jth prediction bρj ¼ f

bwj

N ðxÞ. In the third step, the likelihood is assumed to
be a Gaussian distribution: Pðρjx; bwjÞ ¼ N ðbρj; σðxÞÞ, whose mean is
given by the BNN’s prediction, bρj, and standard deviation by a het-
erogenous observation noise, σ(x). A sample is drawn from this Gaus-
sian distribution N ðbρj; σðxÞÞ that approximates a sample from the
distribution Pðρjx;DÞ. The total variance of such samples can be
expressed as:

varðρÞ ¼ σ2ðxÞ þ 1
Ns

XNs

j¼1

bρj� �2
� EðbρjÞ� �2

" #
: ð4Þ

Here,EðbρjÞ ¼ 1
Ns

PNs
j¼1 f

bwj

N ðxÞ. Thefirst term, σ2(x), in Eq. (4) is the aleatoric
uncertainty that represents the inherent noise in the data and is considered
irreducible. The second term (in the square brackets) in Eq. (4) is the
epistemic uncertainty, that quantifies the modeling uncertainty.

In this work, the aleatoric uncertainty is learned via the BNN model
alongwith the chargedensitiesρ. Therefore, for each inputx, theBNNlearns
twooutputs: f wN ðxÞ and σ(x). For aGaussian likelihood, the noise σ is learned
through the likelihood term of the loss function Eq. (3) following112 as:

log PðDjwÞ ¼
XNd

i¼1

� 1
2
log σ2i �

1
2σ2i

ðf wN ðxiÞ � ρiÞ2 : ð5Þ

Here, Nd is the size of the training data set. The aleatoric uncertainty, σ,
enables the loss to adapt to the data. The network learns to reduce the effect
of erroneous labels by learning a higher value for σ2, which makes the
network more robust or less susceptible to noise. On the other hand, the
model is penalized for predicting high uncertainties for all points through
the log σ2 term.

The epistemic uncertainty is computed by evaluating the second term
of Eq.(4), via sampling bwj from the variational posterior.

Transfer learning using multi-scale data
Conventional DFT simulations for smaller systems are considerably
cheaper than those for larger systems, as the computational cost scales
cubically with the number of atoms present in the simulation cell.
However, the ML models cannot be trained using simulation data from
small systems alone. This is because, smaller systems are far more
constrained in the number of atomic configurations they can adopt,
thus limiting their utility in simulating a wide variety of materials
phenomena. Additionally, the electron density from simulations of
smaller systems differs from that of larger systems, due to the effects of
periodic boundary conditions.

To predict accurately across all length scales while reducing the cost of
training data generation via DFT simulations, we use a transfer learning
approach here. Transfer learning is a machine learning technique where a
network, initially trained on a substantial amount of data, is later fine-tuned
on a smaller dataset for a different task, with only the last few layers being
updated while the earlier layers remain unaltered69. The initial layers (called
“frozen layers”) capture salient features of the inputs from the large dataset,
while the re-trained layers act as decision-makers and adapt to the new
problem.

Transfer learning has been used in training neural network potentials,
first on Density Functional Theory (DFT) data, and subsequently using

datasets generated using more accurate, but expensive quantum chemistry
models113. In contrast, in thiswork, transfer learning is employed to leverage
the multi-scale aspects of the problem. Specifically, the present transfer
learning approach leverages the statistical dissimilarity in data distributions
between various systems and the largest system. This process is employed to
systematically select the training data, ultimately reducing reliance on
heuristics, as detailed in the Supplementary Material (see Supplementary
Fig. 5). This approach allows us tomake electron density predictions across
scales and system configurations, while significantly reducing the cost of
training data generation.

In the case of aluminum, at first, we train the model using a large
amount of data from DFT simulations of (smaller) 32-atom systems.
Subsequently, we freeze the initial one-third layers of the model and
re-train the remaining layers of the model using a smaller amount
(40%) of data from simulations of (larger) 108-atom systems. Further
training using data from larger bulk systems was not performed, since
the procedure described above already provides good accuracy (Figs.
6, 14), which we attribute to the statistical similarity of the electron
density of 108 atom systems and those with more atoms (Supple-
mentary Fig. 5). A similar transfer learning procedure is used for the
SiGe model, where we initially train with data from 64-atom systems
and subsequently retrain using data from 216-atom systems. Overall,
due to the non-linear data generation cost using DFT simulations, the
transfer learning approach reduces training data generation time by
over 50%.

Postprocessing of ML predicted electron density
One way to test the accuracy of the ML models is to compute quantities of
interest (such as the total ground state energy, exchange-correlation energy,
and Fermi level) using the predicted electron density, ρML. Although
information about the total charge in the system is included in the predic-
tion, it is generally good practice to first re-scale the electron density before
postprocessing51,54, as follows:

ρscaled rð Þ ¼ ρMLðrÞ NeZ
Ω
ρMLðrÞdr

: ð6Þ

Here, Ω is the periodic supercell used in the calculations, and Ne is the
number of electrons in the system. Using this scaled density, the Kohn-
ShamHamiltonian is set up within the SPARC code framework, whichwas
also used for data generation via AIMD simulations95–97. A single step of
diagonalization is thenperformed, and the energy of the system is computed
using the Harris-Foulkes formula114,115. The errors in predicting ρML(r), and
the ground state energy thus calculated, can be seen in Fig. 6. More detailed
error values can be found in Supplementary Table 4 and Supplementary
Table 5.

Data availability
Rawdatawere generated atHoffman2High-PerformanceComputeCluster
at UCLA’s Institute for Digital Research and Education (IDRE) and
National Energy Research Scientific Computing Center (NERSC). Derived
data supporting the findings of this study are available from the corre-
sponding author upon request.

Code availability
Codes supporting the findings of this study are available from the corre-
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