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I. EFFICIENT GENERATION OF ATOMIC
NEIGHBORHOOD DESCRIPTORS

The atomic neighborhood descriptors to encode the
atomic neighborhood of the grid point are ||ri−RJ || and
(ri−RK)·(ri−RS)
||ri−RK || ||ri−RS || , as described in the section IV of the

main text. Our implementation of descriptor generation
employs a tree data structure to reduce computational
complexity and is outlined as a pseudocode in Algorithm
1.

The descriptors described above satisfy the following
conditions outlined in [12] and [10]: (i) invariance with
respect to rotations and translations of the system (ii)
invariance with respect to the permutation of atomic in-
dices, i.e., the descriptors are independent of the enu-
meration of the atoms. (iii) for a given atomic neigh-
borhood, the descriptors are unique. (iv) the descriptors
encode the atomic neighborhood effectively while keep-
ing the overall count low. (v) the descriptors generation
process is computationally inexpensive and uses standard
linear algebra operations.

Descriptors are obtained by implementing a paral-
lelized version of Algorithm 1. In the case of SiGe sys-
tems, instead of explicitly encoding the species informa-
tion, we follow [1] and concatenate the descriptors ob-
tained for Si and Ge, to form inputs to the neural net-
work. To encode the relative placement of Si and Ge
atoms with respect to each other, we also consider the
cosine of angles between Si and Ge atoms formed at the
grid point for the SiGe case.

II. COMPUTATIONAL EFFICIENCY

Computational time comparison between DFT calcula-
tion and ML prediction is given in Supplementary Tables
1 and 2 for aluminum and SiGe, respectively. DFT cal-
culations were performed using CPUs, whereas the ML
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Algorithm1 Generation of Descriptors

M = Number of nearest neighbor atoms to compute dis-
tances
Ma = Number of nearest neighbor atoms to compute angles
k = Number of angles obtained for each Ma atoms
Build supercell by extending unit cell in all directions
KDTree = K-D tree for atoms in supercell
for g do ▷ g: grid point

D ← sorted distances to M nearest atoms from g using
K-D tree

for j = 1 to Ma do
ai ▷ coordinates of ith nearest atom from g using

K-D tree
v1 ← ai − g
for j = 1 to k do

Aj ▷ coordinates of jth nearest atom from ai

v2 ← Aj − g
Aij ← v1·v2

||v1|| ||v2||
end for

end for
A ← flatten(A)
descriptors ← [D,A]

end for
Note: Inner two for loops are vectorized and Outermost
for is parallelized in the implementation

predictions used a combination of GPU (inference step)
and CPU (descriptor generation) resources.

The primary contributor to ML prediction time is
descriptor generation, constituting the majority of the
computational effort and the remaining time is neural
network inference (See Supplementary Tables 1 and 2).
Given that neural network inference is well-suited for
GPU execution and is commonly performed on GPUs,
our assessment of parallelization performance focuses on
descriptor generation time. In Supplementary Figure 6,
we present the parallelization performance of descriptor
generation for the Aluminum system with 500 atoms.
This parallelization was executed using the MATLAB’s
’parfor’ function on NERSC Perlmutter CPUs and we
observe 66.6% strong scaling for 64 processors.

The DFT and ML calculations presented in this work
were performed through a combination of resources,
namely, desktop workstations, the Hoffman2 cluster at
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Supplementary Figure 1. Uncertainty quantification for a 256 atom aluminum system with mono vacancy defect.
From left: i) ML prediction of the electron density shown on the defect plane, ii) Epistemic uncertainty iii) Aleatoric
uncertainty iv) Uncertainty shown on the black dotted line from the ML prediction slice. The uncertainty represents

the bound ±3σ, where, σ is the total uncertainty.
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Supplementary Figure 2. Uncertainty quantification Si0.5Ge0.5 system containing 216 atoms. (a) ML prediction of
the electron density, (b) Epistemic Uncertainty (c) Aleatoric Uncertainty (d) Total Uncertainty shown along the
dotted line from the ML prediction slice. The uncertainty represents the bound ±3σtotal, where, σtotal is the total

uncertainty.

UCLA’s Institute of Digital Research and Education
(IDRE), the Applied Computing GPU cluster at MTU,
and NERSC’s supercomputer, Perlmutter. Every com-
pute node of the Hoffman2 cluster has two 18-core Intel
Xeon Gold 6140 processors (24.75 MB L3 cache, clock
speed of 2.3 GHz), 192 GB of RAM and local SSD stor-
age. Every compute node on Perlmutter has a 64-core
AMD EPYC 7763 processor (256 MB L3 cache, clock
speed of 2.45 GHz), 512 GB of RAM and local SSD
storage. The GPU resources on Perlmutter consist of
NVIDIA A100 Tensor Core GPUs. The GPU nodes used
at UCLA and MTU consist of Tesla V100 GPUs.

Large system generation: The million atom systems
presented were generated by repeating one of the avail-
able test systems in all three directions and adding ran-
dom perturbations in the atomic coordinates for each
atom in the resulting system. This process ensures that
the million-atom system is distinct from the smaller sys-
tem employed in its generation and that the atomic
neighborhoods generated within the million-atom system
are not identical to those in the smaller system. Addi-
tionally, it is noteworthy that the systems replicated to
achieve the million-atom configurations are entirely ex-
cluded from the training dataset (e.g. in the case of Alu-

minum, 1372 atom system was employed to generate the
4.1 million-atom system, while the training process uti-
lized 32 and 108 atom systems. In the case of SiGe, a 512
atom system was used to generate the 1.4 million atom
system). The perturbations used were sampled from a
normal distribution with a zero mean and a 0.1 Bohr
standard deviation. The choice of standard deviation
was deliberate, aiming to prevent impractical distances
between atoms and ensure realistic configurations.

Large system calculations: We present electron density
calculation for Al and SiGe systems, each with an ex-
cess of a million atoms, in Fig. II A and Fig. IIA of
the main text, respectively. To predict the charge den-
sity while avoiding memory overload issues, we parti-
tion these multi-million atom systems into smaller sys-
tems, while retaining the atomic neighborhood informa-
tion consistent with the larger original systems. In the
case of aluminum, we break down the 4.1M atom sys-
tem into smaller units comprising 1372 atoms and a grid
consisting of 1753 points. Computation of descriptors
for this 1372-atom chunk takes approximately 34.72 sec-
onds on a desktop workstation system equipped with a
36-core Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz.
Subsequently, the charge density prediction requires ap-
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Supplementary Figure 3. (Left) Total uncertainty for the Al system (∼ 4.1 million atoms) shown in Fig. IIA of the
main text. (Right) Total uncertainty for the SiGe system (∼ 1.4 million atoms) shown in Fig. IIA of the main text

(right).
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Supplementary Figure 4. Histogram showing the
distribution of charge density (ρ) for (a) aluminum and

(b) SiGe.

proximately 1.6 seconds on an Nvidia V100 GPU. Over-
all, the charge density prediction for the 4.1M Al system
takes around 30.72 hours of wall time on combined CPU
and GPU resources.

Analogously, for SiGe, we partition the 1.4M atom sys-
tem into smaller systems composed of 1000 atoms and a
grid with dimensions of 1323 points. The computation of
descriptors for this 1000-atom SiGe chunk requires 22.17
seconds on the aforementioned desktop system. The sub-
sequent charge density prediction takes approximately
1.1 seconds. Overall, it takes around 6.8 hours of wall
time on combined CPU and GPU resources, to predict
the electron density of the SiGe system with 1.4M atoms.
Thus, the techniques described here make it possible

to routinely predict the electronic structure of systems at
unprecedented scales, while using only modest resources
on standard desktop systems.

III. FEATURE CONVERGENCE ANALYSIS

Algorithm 2 and Algorithm 3 describe the process used
to obtain the optimal number of descriptors. In algo-
rithm 2 only distances (set I) are considered as descrip-
tors. The size of the set I (i.e. M) is selected for which
the RMSE for the test dataset converges.

As an illustration, for the aluminum systems, follow-

Number of Atoms 32 108 256 500
DFT Time (CPU) 466 11560 112894 245798

ML
Time

Descriptor Generation 43.25 151.52 367.54 739.58
ρ Prediction (CPU) 2.76 9.67 23.46 47.20
ρ Prediction (GPU) 0.60 0.64 0.75 0.99
Total (With GPU) 43.85 152.16 368.29 740.57

DFT time / Total ML time 10.63 75.97 306.53 331.90

Supplementary Table 1. Comparison of DFT and ML
wall times for prediction of electron density for an

aluminum system. All times are in seconds. The DFT
calculations were performed on Hoffman CPUs, ML

descriptor generation was done on Hoffman CPUs, and
the ML inference was performed on Tesla V100 GPUs.

Number of Atoms 64 216 512 1000
DFT Time 185 4774 51247 281766

ML
Time

Descriptor Generation 38.82 115.23 291.45 611.2
ρ Prediction (CPU) 2.22 7.37 17.37 33.05
ρ Prediction (GPU) 0.50 0.62 0.75 0.89
Total (With GPU) 39.32 115.85 292.20 612.09

DFT time / Total ML time 4.70 41.21 175.38 460.33

Supplementary Table 2. Comparison of DFT and ML
wall times for prediction of electron density for a SiGe
system. All times are in seconds. The DFT calculations
were performed on Perlmutter CPUs, ML descriptor
generation was done on Perlmutter CPUs and the ML

inference was performed on Tesla V100 GPUs.

ing algorithm 2 we use an increment of m = 10. The
algorithm converges to M = 60 as seen in Fig. 15 of the
main text. Therefore, the set I consists of 60 descrip-
tors. Next, Set II descriptors consist of angles subtended
at the grid point by a pair of atoms taken from the set
of M neighboring atoms in the set I determined by al-
gorithm 2. Each pair of the neighboring atoms forms an
angle at the grid point, yielding a total ofM(M−1)/2 an-
gles, which quickly becomes computationally intractable
with increasing M . To alleviate this issue, we reduce the
number of Set II descriptors by eliminating large angles,
which are not expected to play a significant role. This
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Supplementary Figure 5. (a-d) Comparison of the histograms of electron density of aluminum for the largest system
with that of smaller systems. The shaded green areas show the difference between the histograms. The largest

aluminum system has 1372 atoms, whereas the smaller systems have 32, 108, 256, and 500 atoms. e)
Kullback–Leibler (KL) divergence between the probability distributions corresponding to the histograms in a-d and

that of the largest system. The values of the KL divergence decreases with the increase in system size.
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Supplementary Figure 6. Speedup of ML prediction time with respect to number of processors (strong parallel
scaling). The plot is shown for a 500 atom Aluminum system. Speedup is obtained with reference to 1 processor.

The computation was performed on NERSC Perlmutter CPUs.

Algorithm2 Optimal nearest neighbors

M = 0 ▷ Initialization
ϵ0 = ϵ−m = δ1 = δ2 = A large number ▷ Initialization
η = tolerance in RMSE
while δ1 ≥ η & δ2 ≥ η do

M = M +m ▷ Increase M by m ∈ Z+

Nset I ←M ▷ M nearest atoms
N ← Nset I ▷ Only set I descriptors
Compute N descriptors
Train fN ▷ Train the BNN
ϵM ← RMSE ▷ Compute RMSE
δ1 ← |ϵM − ϵM−m|
δ2 ← |ϵM − ϵM−2m|

end while
M = M − 2m

amounts to choosing angles originating from Ma < M
atoms closest to the grid point, and the k− nearest neigh-
bors of each of these atoms. This yields a total of Ma×k
angle descriptors. For various fixed values of k, we it-
eratively choose Ma till the RMSE over the test dataset
converges (Fig. 15 of the main text).

Following algorithm 3 we use an increment of m = 5.
Fig. 15 of the main text shows the convergence plot for

angles for k = 2, 3, and 4. For M = 60, the RMSE
value is the minimum for k = 3. The RMSE value for
k = 3 converges at Ma = 15, which results in a total
of Ma × k = 45 angles. Therefore, set II consists of 45
descriptors. To summarize, following the present feature
selection strategy, the total number of descriptors used
for the aluminum model is N = Nset I +Nset II = 105.

We found that including scalar triple products and
scalar quadruple products in the descriptor, in addition
to the dot products, did not improve the accuracy of the
ML model. To interpret why this is the case, we ob-
serve that the (normalized) scalar triple product can be
interpreted in terms of the corner solid angle (polar sine
function) of the parallelepiped generated by three vec-
tors starting at the given grid point and ending at three
atoms chosen in the neighborhood of the grid point. How-
ever, this quantity can also be calculated through the dot
products between these vectors and is, therefore, already
incorporated in the second set of descriptors. Therefore,
the scalar triple product does not furnish any additional
information. Similar arguments can be made for quadru-
ple and higher products.
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Algorithm3 Optimal number of angles

k = 0 ▷ Initialization
ϵ0 = ϵ−m = δ1 = δ2 = δ3 = A large number ▷ Initialization
η = tolerance in RMSE
while δ3 ≥ η do

k = k + 1
Ma = 0
while δ1 ≥ η & δ2 ≥ η do

Ma = Ma +ma ▷ Increase Ma by ma ∈ Z+

Nset II ←Ma × k ▷ k neighbors of each of Ma

nearest atoms
N ← Nset I +Nset II ▷ Number of total descriptors
Compute N descriptors
Train fN ▷ Train the BNN
ϵMa ← RMSE ▷ Compute RMSE
δ1 ← |ϵMa − ϵMa−ma |
δ2 ← |ϵMa − ϵMa−2ma |

end while
Ma = Ma − 2ma

ϵ′k ← ϵMa

δ3 ← |ϵ′k − ϵ′k−1|
end while
k = k − 1

IV. DETAILS ON UNCERTAINTY
QUANTIFICATION

We provide additional results on uncertainty quantifi-
cation (UQ) in this section. One of the key advantages
of the inbuilt UQ capabilities of the present ML model
is that it allows us to assess the model’s generalizability.
To illustrate this, we consider systems with defects and
varying alloy compositions. The uncertainty estimates of
a model trained without any defect data in training are
shown in Fig. 10 of the main text. The model is more con-
fident in its prediction of defects even if a small amount
(single snapshot) of defect data is added in training. This
is evident by comparing Fig. 1 and main text Fig. 10.
This result is in agreement with the fact that unavailabil-
ity or insufficient training data could yield high epistemic
uncertainties at locations where such incompleteness of
data exists. In addition to high uncertainty, the error
at the defect location increases when data from systems
with defects are not used in training. This implies a posi-
tive correspondence between error and uncertainty in the
Bayesian neural network model. A similar effect of higher
uncertainty for unknown compositions is observed for the
SiGe systems. Since the model is trained only with data
from SiGe systems with 50-50 composition, the uncer-
tainties quantified for this composition shown in Fig. 2 is
less in comparison to the prediction for 60-40 composi-
tion (Fig. II of the main text). However, the uncertainty
for the 60-40 composition is not significantly higher than
the 50-50 composition, demonstrating the generalization
capability of the ML model.

In the following, we investigate the correlation between
error and epistemic uncertainty. The epistemic uncer-
tainty is chosen since it captures the uncertainty due to

modeling error. We found positive correlations between
the uncertainty and the error for configurations that were
not present in the training and therefore exhibit higher
errors. Examples include vacancies in Aluminum and al-
loy compositions away from the training data, as shown
in Fig. 7. We have also observed that for systems similar
to training data, the errors as well as uncertainties are
quite low, and do not exhibit strong correlations. This
indicates that for systems predicted with high uncertain-
ties, uncertainty values may be used to identify regions
with high error.
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(i) 256 atom Aluminum
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(iii) 216 atom Si0.4Ge0.6

Supplementary Figure 7. Correlation between epistemic
uncertainty and error. All three cases show a positive
correlation with R = 0.75, 0.90, 0.59, respectively. The

uncertainty values and absolute error values are
normalized using the min-max method. Each data point
in the plots corresponds to uncertainty and error values

are averaged over the neighborhood that is used to
compute descriptors for the data point.

Results of uncertainty quantification ≈ 4.1 million
atom aluminum system and ≈ 1.4 million atom SiGe sys-
tem are shown in Fig. 3. With an increase in system
size, we extrapolate farther away from the system size
included in the training data. Despite this, the total un-
certainty of millions of atom systems is similar to that
of smaller systems. This implies that the model can pre-
dict systems with millions of atoms with the same level
of confidence as smaller systems, which in turn assures
the accuracy of the predictions. Looking ahead, we plan
to further enhance the credibility of million-atom pre-
dictions by validating against results obtained from up-
coming and state-of-the-art techniques involving Density
Functional Theory (DFT) computations at a large scale
[3, 4, 8, 17].
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We found that the ML model is less confident in pre-
dicting charge densities near the nucleus in comparison
to the away from the nucleus for various systems, which
is reflected in the high values of uncertainties at those
locations. We attribute this to fewer grid points close to
the nuclei, and the availability of more data away from
them. This imbalance in the data is evident from the
histograms for the distribution of charge densities shown
in Fig. 4, where grid points with low values of the elec-
tron density — as is the case with points very close to
the nuclei — are seen to be very few.

V. DETAILS ON THE ADVANTAGES OF
TRANSFER LEARNING

As demonstrated in prior research [22] and in this
work, employing data from larger systems for training
enhances the accuracy of machine learning models. How-
ever, the following question persists: what is the appro-
priate largest sizes of the training system to achieve a
sufficiently accurate machine learning model that works
across scales? To answer this question, we propose the
following approach.

To ensure accurate predictions for bulk systems (com-
prising thousands or more atoms), it is imperative that
our model be trained on data that statistically resembles
such systems. Small-scale systems with only a few tens
of atoms may not adequately represent the bulk limit,
primarily due to the periodicity constraints inherent in
simulations. This calls for training the model using larger
systems. To determine appropriate training system sizes
that adequately represents bulk systems, we employ the
Kullback-Leibler (KL) divergence [15]. We consider the
largest available system as the most faithful representa-
tion of bulk systems and use it to determine the largest
size of the training systems. For the case of Aluminum,
a system consisting of 1372 atoms can be reliably calcu-
lated using KS-DFT and is chosen as the reference. We
compare the electron density distributions from various
available systems against this reference system. The KL
divergence values then guide us in selecting the largest
training system needed to train a model that can accu-
rately predict even at large scales (relevant to the refer-
ence system). Specifically, the largest training systems
chosen by us contain 108 atoms, as these systems are
found to be sufficiently statistically similar to the 1372-
atom reference system (as illustrated in Fig. 5). This
meticulous selection process guarantees that our machine
learning model is accurate at large scales while providing
a judicious stopping point to our transfer learning scheme
by determining the largest system needed for training.
Thus, we present an approach that answers the question
of selecting training system size and reduces the reliance
on ad hoc heuristics for doing so.

The transfer learning approach [20] significantly re-
duces the root-mean-square error of a test dataset while
costing much less computation for the training data gen-

eration. To depict this, a comparison of the transfer
learned model with various non-transfer learned models
is shown in Fig. 8.
We found that transfer learning helps to reduce the

error and uncertainty in prediction for larger systems.
By adding data from the 108-atom aluminum systems
in training, during the transfer learning approach, we
significantly reduce the error (by 56%) and uncertainty
(by 29%) of the predictions for a 1372-atom test system
in comparison to a non-TL model trained using data only
from the 32-atom systems, as shown in Fig. 9.

VI. DETAILS ON BAYESIAN NEURAL
NETWORK

Architecture: We use a Densenet [11] type archi-
tecture with three Dense blocks for the Bayesian Neural
networks in this work. Each Dense block is composed
of three hidden layers with 250 nodes per layer and a
GELU activation function [9]. The skip connections in
the Densenet-type architecture are weighted by a train-
able coefficient. These skip connections have multiple ad-
vantages. Firstly, they prevent gradients from diminish-
ing significantly during backpropagation. Further, they
facilitate improved feature propagation by allowing each
layer to directly access the feature generated by previ-
ous layers. Finally, these skip connections promote fea-
ture reuse, thereby substantially reducing the number of
parameters. Such skip connections have been used for
electron density predictions in the literature [22].
Due to the stochastic weights of Bayesian neural net-

works, each weight is represented by its mean and stan-
dard deviation. Thus, the number of parameters in a
Bayesian neural network is twice as compared to a de-
terministic network with the same architecture. In addi-
tion, the output of the Bayesian Neural networks used in
this work has two neurons, one for predicting the charge
density (ρ) and the other for predicting the aleatoric un-
certainty (σ).
Training Details: The parameters of the BNNs for

the 32-atom Al system and 64-atom SiGe systems were
initialized randomly with values drawn from the Gaus-
sian distribution. The mean of the parameters were ini-
tialized with values drawn from N (0, 0.1). The standard
deviations were parameterized as σ = log(1 + exp(τ)) so
that σ is always non-negative. The parameter τ was ini-
tialized with values drawn from N (−3, 0.1). The priors
for all the network parameters were assumed to be Gaus-
sians: N (0, 0.1). With these initializations and prior
assumptions the initial models (i.e. model for 32-atom
Al system and 64-atom SiGe system) were trained using
standard back-propagation for BNNs. The Adam opti-
mizer [13] was used for training and the learning rate
was set to 10−3 for all the networks used in this work.
In the case of transfer learning, we freeze both the mean
and standard deviation of the initial one-third layers of
the model and re-train the mean and standard devia-
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Supplementary Figure 8. Comparison of (a) error and (b) training data generation time between models with and
without transfer learning.

tions of the remaining layers of the model. The prior
assumptions, initialization of the learnable parameters,
and their learning procedures remained the same as de-
scribed above for the 32-atom Al and 64-atom SiGe sys-
tems. The training time for the Al and SiGe systems are
presented in Supplementary Table 3. All the Bayesian
Neural networks are trained on NVIDIA A100 Tensor
Core GPUs

The amount of data used in training for the two sys-
tems is as follows:

• Al: 127 snaps from 32 atom data and in addition 25
snaps from 108 atom data. The 108 atom data has
90× 90× 90 grid points, while the 32 atom system
has 60× 60× 60 grid points.

• SiGe: 160 snaps of 64 atom data and in addition
30 snaps of 216 atom data. The 64 atom system
has 53 × 53 × 53 grid points, while the 216 atom
system has 79× 79× 79 grid points.

System Size Epochs
Training wall time (s)
Per epoch Total

Al
32 20 906

31060
108 20 647

SiGe
64 20 651

18030
216 10 501

Supplementary Table 3. GPU Training times for the
BNNs. The training was performed on the NVIDIA

Tesla A100 GPU.

Validation and Testing Details: 20% of the data
from the systems used for training is used as validation
data. Testing is performed on snapshots not used for
training and validation, and systems that are larger than
those used for generating the training data in order to
determine the accuracy in electron density prediction.

VII. POSTPROCESSING RESULTS

In Supplementary Tables 4 and 5 we compare the er-
rors in the electron densities and the ground state en-
ergies for various Al and SiGe systems. We see errors
well below the millihartree per atom range for total en-
ergies, even in the presence of defects and some degree of
compositional variations — these systems being quite far
from the ones used to generate the training data. The
average L1 norm per electron between ML and DFT elec-
tron densities for the largest available aluminum system
(containing 1372 atoms — this is the largest aluminum
system for which the DFT calculations could be carried
out reliably within computational resource constraints),
is 1.14 × 10−2. In the case of SiGe, where the largest
available system consists of 1728 atoms, the average L1

norm per electron is 8.25×10−3. We observe that the er-
rors for these largest systems are somewhat smaller than
the typical errors associated with the systems listed in
Supplementary Tables 4 and 5, contradictory to what is
anticipated. This can be attributed to the fact that the
available AIMD trajectories for larger systems are typi-
cally not long enough (due to computational constraints)
to induce significant variations in atomic configurations
with respect to the equilibrium configuration, unlike the
longer AIMD trajectories available for smaller systems.
Consequently, the largest systems tested here are more
amenable to accurate prediction, resulting in lower er-
rors.
The time for the calculation of the total energy and

forces from ML-predicted densities via postprocessing in-
volves computation of the electrostatic, exchange corre-
lation and band-energy terms, and uses a single diagonal-
ization step to compute wave-function dependent quan-
tities. Therefore, its computational time is similar to
that of a single self-consistent field (SCF) step in a reg-
ular DFT calculation, provided the same eigensolver is
used. For reference, using the MATLAB version of the
SPARC code [21] on a single CPU core, the postprocess-
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Supplementary Figure 9. (i) Decrease in error and uncertainty for a larger system (1372 atom) with transfer
learning. Comparison is shown between predictions by a non-TL model trained using data only from the 32-atom
system i(a-c) and a TL model trained by transfer learning using additional data from the 108-atom system i(d-f).

The slice considered is shown in Fig. II(a) of the main text. i(a and d) Error in ML prediction, i(b and e) Epistemic
uncertainty, i(c and f) Total uncertainty along a line, as shown in Fig. II(a) of the main text. Color bars are the
same for i(a) and (c), and i(b) and (d). (ii) Bar plot showing a decrease in RMSE error and epistemic uncertainty.

ii(a) The decrease in RMSE error is 56% and ii(b) the decrease in the mean epistemic uncertainty is 29%.

ing time is about 174 seconds for a 32 atom aluminum
system while it is about 1600 seconds for 108 atoms. This
also includes the time for computation of the Hellmann-
Feynman forces. We would also like to mention here
that this postprocessing step can be significantly sped up
by the ML prediction of other relevant quantities, such
as the band energy and electrostatic fields [18]. As for
the atomic forces, i.e., energy derivatives with respect to
atomic coordinates, automatic differentiation of the un-
derlying neural networks can be employed to speed up
calculations. All of these constitute ongoing and future
work.

VIII. CALCULATION OF THE BULK
MODULUS FOR ALUMINUM

We show a comparison between some material prop-
erties calculated using the electron density predicted by
the ML model, and as obtained through DFT calcula-
tions. Specifically, we compute the optimum lattice pa-
rameter and the bulk modulus for aluminum — these
corresponding to the first and second derivatives of the
post-processed energy curves (Fig. 7 of the main text),
respectively. A summary of our results can be found in
Supplementary Table 6. It can be seen that bulk modulus



9

Case
Accuracy of Ground-state Exch. Corr. Fermi Max error in

electron density energy energy level eigenvalue
(L1 norm per electron) (Ha/atom) (Ha/atom) (Ha) (Ha)

Entire test data set 2.62× 10−2 2.33× 10−4 4.36× 10−4 4.61× 10−4 4.58× 10−3

Al (32 atoms) 2.27× 10−2 1.30× 10−4 1.07× 10−3 9.80× 10−4 4.10× 10−3

Al (108 atoms) 1.67× 10−2 9.33× 10−5 9.82× 10−5 1.13× 10−4 1.87× 10−3

Al (256 atoms) 3.93× 10−2 5.60× 10−4 4.18× 10−4 2.03× 10−4 6.67× 10−3

Al (500 atoms) 3.96× 10−2 4.11× 10−4 2.41× 10−4 5.04× 10−4 8.52× 10−3

Al vacancy defects 1.92× 10−2 9.80× 10−5 1.42× 10−4 2.98× 10−4 3.85× 10−3

Strain imposed Al 2.54× 10−2 1.75× 10−4 8.91× 10−4 6.64× 10−4 3.11× 10−3

Supplementary Table 4. Accuracy of the ML predicted electron density in terms of the L1 norm per electron,

calculated as 1
Ne

×
ˆ
Ω

∣∣ρscaled(r)− ρDFT(r)
∣∣ dr, for various test cases for an FCC aluminum bulk system (Ne is the

number of electrons in the system). Also shown in the Supplementary Table are errors in the different energies as
computed from ρscaled. The test data set for post-processing was chosen such that it covered examples from all

system sizes, configurations, and temperatures. For calculating the relevant energies, ρscaled was used as the initial
guess for the electron density, and a single Hamiltonian diagonalization step was performed. Energies were then

computed.

Case
Accuracy of Ground-state Exch. Corr. Fermi Max error in

electron density energy energy level eigenvalue
(L1 norm per electron) (Ha/atom) (Ha/atom) (Ha) (Ha)

Entire test data set 1.93× 10−2 1.47× 10−4 9.34× 10−4 1.43× 10−3 7.29× 10−3

Si0.5Ge0.5 (64 atoms) 1.51× 10−2 8.08× 10−5 1.40× 10−3 8.71× 10−4 5.07× 10−3

Si0.5Ge0.5 (216 atoms) 1.90× 10−2 1.18× 10−4 2.50× 10−4 3.08× 10−4 4.99× 10−3

Si0.5Ge0.5 (512 atoms) 2.50× 10−2 2.57× 10−4 3.70× 10−4 1.32× 10−3 1.27× 10−2

Si0.5Ge0.5 vacancy defects 1.70× 10−2 9.68× 10−5 2.36× 10−4 2.82× 10−3 6.85× 10−3

SixGe1–x (x ̸= 0.5) 2.39× 10−2 2.54× 10−4 2.41× 10−3 1.25× 10−3 9.36× 10−3

Supplementary Table 5. Accuracy of the ML predicted electron density in terms of L1 norm per electron, calculated

as 1
Ne

×
ˆ
Ω

∣∣ρscaled(r)− ρDFT(r)
∣∣ dr, for various test cases for Si0.5Ge0.5 (Ne is the number of electrons in the

system). Also shown in the Supplementary Table are errors in the different energies as computed from ρscaled. The
test data set for post-processing was chosen such that it covered examples from all system sizes and temperatures.

For calculating the relevant energies, ρscaled was used as the initial guess for the electron density, and a single
Hamiltonian diagonalization step was performed. Energies were then computed. For SixGe1–x , we used

x = 0.40, 0.45, 0.55, 0.60.

differs by only about 1%, while the lattice parameters are
predicted with even higher accuracy. Notably, the pre-
dicted lattice parameter and the bulk modulus are very
close to experimental values [16], and the deviation from
experiments is expected to decrease upon using larger
supercells to simulate the bulk, a trend also seen in Sup-
plementary Table 6. This is consistent with the overall
results shown in the main manuscript and further rein-
forces the predictive power of our model for non-ideal
systems.

IX. COMPARISON WITH MODELS BASED ON
OTHER DESCRIPTORS

In the main text, we have presented errors achieved
in electron density prediction by our model. The results
indicate that our approach is generally as accurate as
(and in some cases outperforms) previous work [1, 22].

To further compare it with existing similar approaches,
we compare it with electron density predictions made via
the well known SNAP descriptors [5, 19]. Specifically, we
have compared the relative L1 error (as defined in [22])
on 29 test snapshots using the dataset of an Aluminum
system with 32 atoms. We used the same training dataset
and employed a neural network for both the descriptors.
Both the descriptors yield nearly identical L1 errors (al-
though the distribution of errors is different as shown
in Fig. 10). At the same time, the calculation of the
scalar product descriptors employed here exhibits com-
putational efficiency, requiring about 50% less time than
generation of the SNAP descriptors. To ensure a fair and
accurate comparison of descriptor computation time, the
computations for both descriptors were performed on a
single-core CPU. We utilized the data of Be 128 atoms
provided by [7] and the SNAP code provided by [5, 6],
for comparing descriptor calculation time.
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Material property 2× 2× 2 supercell 3× 3× 3 supercell
Lattice parameter (Bohr) 7.4294 (7.4281) 7.5208 (7.5188)

Bulk modulus (GPa) 92.2774 (92.7708) 75.7977 (76.3893)

Supplementary Table 6. A comparison between the calculated lattice parameter and the bulk modulus for aluminum
using ρML and ρDFT (DFT values in parentheses). We observe that the predicted lattice parameter closely matches
the value given by DFT calculations. The “true” optimized lattice parameter for Al, using a fine k-space mesh, is
found to be 7.5098 Bohr while experimental values are about 7.6 Bohr [2]). The ML predicted value of the bulk

modulus matches the DFT value very closely, which itself is very close to the experimental value of approximately
76 GPa [16], at room temperature.
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Supplementary Figure 10. Comparison with SNAP
descriptors

X. EQUIVARIANCE OF THE MODEL

In this section we show numerically that our model is
equivariant, i.e., the predicted electron density is invari-
ant with respect to overall rotation, translation, and per-
mutation of atomic indices of the underlying material sys-
tem. As mentioned in [14], equivariance can be achieved
by designing invariant features and predicting the elec-
tron density as a scalar valued variable. Since our model
is based on these strategies, our machine learning model
is expected to be equivariant, theoretically. We substan-
tiate this claim numerically in Supplementary Figure 11.

Supplementary Figure 11. Schematic showing
preservation of equivariance in our model. X is 256
atom Aluminum system at high temperature (chosen
such that there are no obvious intrinsic rotational
symmetries of the system). Y is the corresponding

electron density. D(g) corresponds to the rotation of π
2

around the Y-axis. L is the composite map from the
system to the electron density. We observe numerically

that, ||L ◦DX (g)−DY(g) ◦ L||∞ ≈ 10−10.
||L ◦DX (g)−DY(g) ◦ L||∞ is not exactly zero because
of roundoff errors in billions of floating point operations

involved in descriptor calculations and forward
propagation through neural networks. Thus,

L ◦DX (g) = DY(g) ◦ L, and hence equivariance is
preserved.
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